精英家教网 > 高中数学 > 题目详情
3.已知a=$\frac{1}{n}$$\underset{\stackrel{n}{∑}}{i=1}$($\frac{i}{n}$)2(n∈N*),b=${∫}_{0}^{1}$x2dx,则a,b的大小关系为(  )
A.a<bB.a=b
C.a>bD.a,b的大小与n的取值有关

分析 根据等差数列的前n项和公式求出a,再由定积分的公式求出b的值,再由n的范围比较a和b大小

解答 解:由题意知,a=$\frac{1}{n}$$\underset{\stackrel{n}{∑}}{i=1}$($\frac{i}{n}$)2=$\frac{1}{n}$+$\frac{2}{n}$+…+$\frac{n}{n}$=$\frac{1}{n}$×$\frac{n(n+1)}{2}$=$\frac{n+1}{2}$,
b=${∫}_{0}^{1}$x2dx=$\frac{1}{3}$x3|${\;}_{0}^{1}$=$\frac{1}{3}$,
∵$\frac{n+1}{2}$≥1,
∴$\frac{n+1}{2}$>$\frac{1}{3}$,
∴a>b,
故选:C.

点评 本题考查了等差数列的前n项和公式、定积分的公式的应用,利用放缩法比较两个数(式子)的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求:
(1)第二次才取到黄色球的概率.
(2)发现其中之一是黄色的,另一个也是黄色的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线y=(3a-1)x+a-1,为使这条直线经过第一、三、四象限,则实数a的取值范围是$(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合M={1,(m2-2m)+(m2+m-2)i},N={-1,1,4i},若M∪N=N,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列式子:
$\frac{1}{3}$=$\frac{1}{3}$;
$\frac{1}{3}$+$\frac{1}{15}$=$\frac{2}{5}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$=$\frac{3}{7}$;
$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+$\frac{1}{63}$=$\frac{4}{9}$;

则可以归纳,当n∈N*时,有式子$\frac{1}{3}$+$\frac{1}{15}$+$\frac{1}{35}$+…+$\frac{1}{4{n}^{2}-1}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的三边长为a、b、c,且其中任意两边长均不相等.若$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$成等差数列.
(Ⅰ)比较$\frac{b}{a}$与$\frac{c}{b}$的大小,并证明你的结论.
(Ⅱ)求证:B不可能是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{lnx}{x}$,g(x)=xf(x)+$\frac{3}{8}{x}^{2}-2x+2$.
(Ⅰ)求函数y=g(x)的单调区间;
(Ⅱ)若函数y=g(x)在区间[ek,+∞](k∈Z)上有零点,求k的最大值(e=2.718…);
(Ⅲ)证明f(x)≤1-$\frac{1}{x}$在其定义域内恒成立,并比较f(22)+f(32)+…+f(n2)与$\frac{(2n+1)(n-1)}{2(n+1)}$(n∈N*且n≥2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知二项式($\sqrt{x}$-$\frac{1}{x}$)n的展开式的第6项是常数项,则n的值是(  )
A.5B.8C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定点A(3,2),若点P为抛物线y2=2x上的动点,则当P到抛物线的焦点F的距离|PF|与|PA|之和最小时,点P的坐标为(2,2).

查看答案和解析>>

同步练习册答案