精英家教网 > 高中数学 > 题目详情
2.某产品40件,其中有次品数3件,现从中任取2件,则其中至少有一件次品的概率是(  )
A.0.146 2B.0.153 8C.0.996 2D.0.853 8

分析 没有次品的抽法有${C}_{37}^{2}$种,求得没有次品的概率,用1减去此概率,即得所求.

解答 解:没有次品的抽法有${C}_{37}^{2}$种,故没有次品的概率为$\frac{{C}_{37}^{2}}{{C}_{40}^{2}}$,
故至少有一件次品的概率为 1-$\frac{{C}_{37}^{2}}{{C}_{40}^{2}}$=0.1462,
故选:A.

点评 本题主要考查条件概率公式,所求的事件与它的对立事件概率间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=$\left\{\begin{array}{l}f(x)(x≥0)\\-f(x)(x<0)\end{array}$.
(1)f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在 (1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设b-2=2a,记F(x)在[0,1]上的最大值为G(a),求函数G(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,P是正方体ABCD-A1B1C1D1表面对角线A1C1上的一个动点,正方体的棱长为1,
(1)求PA与DB所成角;
(2)求DC到面PAB距离d的取值范围;
(3)若二面角P-AB-D的平面角为α,二面角P-BC-D的平面角为β,
求α+β最小时的正切值..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{i}{2+i}$在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知如下六个函数:y=x,y=x2,y=lnx,y=2x,y=sinx,y=cosx,从中选出两个函数记为f(x)和g(x),若F(x)=f(x)+g(x)的图象如图所示,则F(x)=2x+sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=$\sqrt{2}$,过BC的中点D作平面ACB1的垂线,交平面ACC1A1于E,则点E到平面BB1C1C的距离为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算${(\frac{1}{2})^{{{log}_2}3-1}}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\frac{6}{x}-{log_2}x$,在下列区间中,包含f(x)零点的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在下列命题中,真命题是(  )
A.“x=2时,x2-3x+2=0”的否命题
B.“若α=β,则sinα=sinβ”的逆命题
C.平面α⊥平面α,平面γ⊥平面β,则平面α∥平面γ
D.“相似三角形的对应角相等”的逆否命题

查看答案和解析>>

同步练习册答案