精英家教网 > 高中数学 > 题目详情
6.已知公差不为零的等差数列{an}满足:a1=3,且a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)若Sn表示数列{an}的前n项和,求数列{$\frac{1}{{S}_{n}}$}的前n项和Tn

分析 (1)设数列{an}的公差为d(d≠0),由题可知,a1•a13=a42,求出d,再根据等差数列的前n项和公式即可求出;
(2)$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),根据裂项求和即可求出答案.

解答 解:(1)设数列{an}的公差为d(d≠0),由题可知,a1•a13=a42
即3(3+12d)=(3+3d)2,解得d=2,
则an=3+(n-1)×2=2n+1,
(2)Sn=$\frac{n(3+2n+1)}{2}$=n(n+2),
则$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
则Tn=$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+$\frac{1}{n(n+2)}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$),
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{1}{2(n+1)}$-$\frac{1}{2(n+2)}$,
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$

点评 本题考查了等差数列的性质和前n项和公式,以及裂项求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.过直线2x-y+3=0和圆x2+y2+2x-4y+1=0交点且面积最小的圆的方程为(  )
A.(x+$\frac{3}{5}$)2+(y-$\frac{9}{5}$)2=$\frac{19}{5}$B.(x-$\frac{3}{5}$)2+(y-$\frac{9}{5}$)2=$\frac{19}{5}$C.(x-$\frac{3}{5}$)2+(y+$\frac{9}{5}$)2=$\frac{19}{5}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x3+ax,若f(2)=10,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,角A,B,C的对边分别为a,b,c,若b=1,a=2c,则sinC的最大值为(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.lg0.01+($\frac{1}{2}$)-1的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\frac{{x}^{3}}{3}$-sin2x的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知cos2($\frac{x}{2}$+$\frac{π}{4}$)=cos(x+$\frac{π}{6}$),则cosx等于(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知p(80<ξ≤100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取(  )
A.5份B.10份C.15份D.20份

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.要从编号为1~50的50名学生中用系统抽样方法抽出5人,所抽取的5名学生的编号可能是(  )
A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,32

查看答案和解析>>

同步练习册答案