精英家教网 > 高中数学 > 题目详情
16.(x-1)(x2-$\frac{1}{x}$)6的展开式中常数项为-15.

分析 (x2-$\frac{1}{x}$)6的展开式的通项公式:Tr+1=${∁}_{6}^{r}$$({x}^{2})^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$x12-3r.分别令12-3r=-1,0,进而得出答案.

解答 解:(x2-$\frac{1}{x}$)6的展开式的通项公式:Tr+1=${∁}_{6}^{r}$$({x}^{2})^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$x12-3r
分别令12-3r=-1,解得r∈∅.
12-3r=0,解得r=4.
∴(x-1)(x2-$\frac{1}{x}$)6的展开式中常数项=-1×${∁}_{6}^{4}$=-15.
故答案为:-15.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(sinx,sin2x+1),$\overrightarrow{b}$=(2sinx,1),函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$(x∈R).
(1)求函数f(x)的最小正周期
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sin(α-$\frac{π}{6}$)=-$\frac{4}{5}$,则cos(α+$\frac{π}{3}$)=$\frac{4}{5}$;cos(2α-$\frac{π}{3}$)=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数$\frac{a-i}{3+4i}$的实部是$\frac{2}{5}$,则实数a=(  )
A.2B.$\frac{14}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为($\frac{π}{4}$,0).将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移$\frac{π}{2}$个单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式;
(2)定义:当函数取得最值时,函数图象上对应的点称为函数的最值点,如果函数y=F(x)=$\sqrt{3}sin\frac{πx}{k}$的图象上至少有一个最大值点和一个最小值点在圆x2+y2=k2(k>0)的内部或圆周上,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinxcosx+$\sqrt{3}{cos^2}$x
(1)若0≤x≤$\frac{π}{2}$,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.实数$\frac{a+i}{2-i}$(a为实数)的共轭复数为(  )
A.1B.-5C.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设直线x=t与两数f(x)=x2+1,g(x)=x+lnx的图象分别交于P,Q两点,则|PQ|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在x上的截距为-3,且和直线2x+y一1=0平行的直线方程为2x+y+6=0.

查看答案和解析>>

同步练习册答案