精英家教网 > 高中数学 > 题目详情
14.在△ABC中,a=6,b=7,c=8,则△ABC的面积等于$\frac{21\sqrt{15}}{4}$.

分析 根据已知,由余弦定理可得cosA的值,从而可求sinA的值,代入三角形面积公式即可得解.

解答 解:∵由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{49+64-36}{2×7×8}$=$\frac{11}{16}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3\sqrt{15}}{16}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×7×8×$$\frac{21\sqrt{15}}{112}$=$\frac{21\sqrt{15}}{4}$.
故答案为:$\frac{21\sqrt{15}}{4}$.

点评 本题主要考查了余弦定理,同角三角函数关系式,三角形面积公式的应用,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(-1,1),$\overrightarrow c$=(4,2),则$\overrightarrow c$=(  )
A.$3\overrightarrow a+\overrightarrow b$B.$3\overrightarrow a-\overrightarrow b$C.$-\overrightarrow a+3\overrightarrow b$D.$\overrightarrow a+3\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=($\frac{1}{2}$sin2x,cos2x-$\frac{1}{2}$),$\overrightarrow{b}$=(sinφ,cosφ),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$(0<φ<π),其图象过点($\frac{π}{8}$,$\frac{1}{2}$)
(1)求φ的值和f(x)的图象的对称中心;
(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知O为锐角三角形ABC的外心,∠B=30°,$\frac{cosA}{sinC}$$\overrightarrow{BA}$+$\frac{cosC}{sinA}$$\overrightarrow{BC}$=2m$\overrightarrow{OB}$,则实数m的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.定义在R上的函数f(x)=$\frac{x}{{{x^2}+1}}$,若函数g(x)=f(x)+$\frac{mx}{1+x}$在区间(-1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设圆C:(x-k)2+(y-2k+1)2=1,则圆C的圆心轨迹方程为2x-y-1=0,若k=0时,则直线l:3x+y-1=0截圆C所得的弦长=$\frac{{2\sqrt{15}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)求不等式的解集:|x-1|+|x+3|≥2.
(2)不等式|x-1|+|x+3|>a,对一切实数x都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的函数f(x)满足:①函数y=f(x-1)的图象关于(1,0)对称;②对于x∈R,$f(\frac{3}{4}-x)=f(\frac{3}{4}+x)$;③当$x∈(-\frac{3}{2},-\frac{3}{4}]$时,f(x)=log2(-3x+1),则f(2012)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x||x-3|<4}则$B=\left\{{y\left|{\frac{6}{y}}\right.}\right.∈{N^*},y∈A,y∈N\left.{\;}\right\}$中元素的个数为(  )
A.3个B.4个C.1个D.2个

查看答案和解析>>

同步练习册答案