精英家教网 > 高中数学 > 题目详情
18.若loga$\frac{1}{4}$=-2,则a=(  )
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 根据对数的定义即可求出

解答 解:loga$\frac{1}{4}$=-2,则a-2=$\frac{1}{4}$=2-2
∴a=2,
故选:A

点评 本题考查了对数和定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知f(x)=x2-4x+3,g(x)=mx+5-2m,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,则实数m的取值范围是(-∞,-3]∪[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若曲线y=1+$\sqrt{4-{x}^{2}}$与直线kx-y-2k+4=0有两个公共点,则实数k的取值范围是$\frac{5}{12}$<k≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.国家为了鼓励节约用水,实行阶梯用水收费制度,价格参照表如表:
用水量(吨)单价(元/吨)
0~20(含)2.5
20~35(含)3超过20吨不超过35吨的部分按3元/吨收费
35以上4超过35吨的部分按4元/吨收费
(Ⅰ)若小明家10月份用水量为30吨,则应缴多少水费?
(Ⅱ)若小明家10月份缴水费99元,则小明家10月份用水多少吨?
(Ⅲ)写出水费y与用水量x之间的函数关系式,并画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=lg(ax-1)-lg(x-1)在区间[2,+∞)上是增函数,则a的取值范围是$\frac{1}{2}$<a<!.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+4,x≤1}\\{-ax+3a-4,x>1}\end{array}\right.$在R上单调递减,则实数a的取值范围是(  )
A.[0,2]B.[0,1]C.[0,+∞)D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α,β是两个相交平面,若点A既不在α内,也不在β内,则过点A且与α,β都平行的直线的条数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=|2x-1|,定义f1(x)=x,fn+1(x)=f(fn(x)),已知函数g(x)=fm(x)-x有8个零点,则m的值为(  )
A.8B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=2-|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案