精英家教网 > 高中数学 > 题目详情

【题目】函数.

1)讨论上的最大值;

2)有几个,且为常数),使得函数上的最大值为

【答案】1;(2)两个.

【解析】

1)利用导数求出上的最大值为,然后当时,,从而可得到答案;

2)当时,,然后分两种情况讨论,当时,,记,利用导数得到上有唯一的零点即可.

1

时,单调递增;

时,单调递减,

上的最大值为

又当时,

此时,

所以上的最大值为.

2)当时,.

①当时,的最大值为

②当时,的最大值为,∴.

,则有

.

时,单调递减,又∵

上有唯一的零点.

时,单调递增;

时,单调递减.

,又∵

所以上有唯一的零点,在上的函数值恒大于0.

上有唯一的零点.

上有唯一解,.

综上所述,有两个符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,菱形与等边所在平面互相垂直,分别是线段的中点.

1)求证:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业接到生产3000台某产品的三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件),已知每个工人每天可生产A部件6件,或B部件3件,或C部件2.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为kk为正整数).

1)设生产部件的人数为,分别写出完成三种部件生产需要的时间;

2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于次称为优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为.

1)若,则在第一轮游戏他们获优秀小组的概率;

2)若则游戏中小明小亮小组要想获得优秀小组次数为次,则理论上至少要进行多少轮游戏才行?并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为,过的直线与相交于两点.

1)以为直径的圆与轴交两点,若,求

2)点上,过点且垂直于轴的直线与分别相交于两点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅原理指出:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等,例如在计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆所围成的平面图形绕y轴旋转一周后得一橄榄状的几何体,类比上述方法,运用祖暅原理可求得其体积等于(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】地球的公转轨道可以看作是以太阳为一个焦点的椭圆,根据开普勒行星运动第二定律,可知太阳和地球的连线在相等的时间内扫过相等的面积,某同学结合物理和地理知识得到以下结论:①地球到太阳的距离取得最小值和最大值时,地球分别位于图中点和点;②已知地球公转轨道的长半轴长约为千米,短半轴长约为千米,则该椭圆的离心率约为.因此该椭圆近似于圆形:③已知我国每逢春分(日前后)和秋分(日前后),地球会分别运行至图中点和点,则由此可知我国每年的夏半年(春分至秋分)比冬半年(当年秋分至次年春分)要少几天.以上结论正确的是(

A.B.①②C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会经济高速发展,人民的生活水平越来越高,部分学校安装了中央空调,某校数学建模队调查了某品牌中央空调,得到该设备使用年限x(单位:年)和维修总费用y(单位:万元)的统计表如下:(每年年底维修保养)

使用年限x(单位:年)

2

3

4

5

6

维修总费用y(单位:万元)

1

3

4

由上表可得线性回归方程,则根据此模型预报该品牌中央空调第8年年底的维修费用约为(

A.万元B.万元C.万元D.万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,左焦点、右焦点都在轴上,点是椭圆上的动点,的面积的最大值为,在轴上方使成立的点只有一个.

(1)求椭圆的方程;

(2)过点的两直线分别与椭圆交于点和点,且,比较的大小.

查看答案和解析>>

同步练习册答案