精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系xoy中,若双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\sqrt{10}$,则双曲线C的渐近线方程为y=±3x.

分析 利用($\frac{c}{a}$)2=1+($\frac{b}{a}$)2=10,可得$\frac{b}{a}$=3,即可求出双曲线的渐近线方程.

解答 解:因为($\frac{c}{a}$)2=1+($\frac{b}{a}$)2=10,所以$\frac{b}{a}$=3,所以渐近线方程为y=±3x.
故答案为:y=±3x.

点评 本题给出双曲线的离心率,求双曲线的渐近线方程,着重考查了双曲线的标准方程与基本概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x3+bx2+cx,对任意的b,c∈[-3,3].f(x)在(-1,1)内既有极大值又有极小值的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=3,b=2$\sqrt{6}$,∠B=2∠A,则cosA的值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{6}}}{3}$C.$\frac{{\sqrt{6}}}{6}$D.$\frac{{\sqrt{6}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知底面边长为$\sqrt{3}$的正三棱柱ABC-A1B1C1的体积为$\frac{9}{4}$,若点P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={-1,0,2},B={x|x=2n-1,n∈Z},则A∩B={-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设Sn为数列{an}的前n项和,若Sn=nan-3n(n-1)(n∈N*),且a2=11,则S20的值为1240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义:从一个数列{an}中抽取若干项(不少于三项)按其在{an}中的次序排列的一列数叫做{an}的子数列,成等差(比)的子数列叫做{an}的等差(比)子列.
(1)求数列1,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$的等比子列;
(2)设数列{an}是各项均为实数的等比数列,且公比q≠1.
(i)试给出一个{an},使其存在无穷项的等差子列(不必写出过程);
(ii)若{an}存在无穷项的等差子列,求q的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,0),若(λ$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数λ的值为(  )
A.-5B.-$\frac{2}{5}$C.-$\frac{3}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{2a(x-1)}{x+1}$(a∈R)
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)试讨论函数y=f(x)的单调性.

查看答案和解析>>

同步练习册答案