精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,若不等式组
x+y-1≥0
x-1≤0
ax-y+1≥0
(α为常数)所表示的平面区域内的面积等于2,则a的值为多少?
考点:简单线性规划
专题:计算题
分析:先根据约束条件画出可行域,求出可行域顶点的坐标,再利用几何意义求关于面积的等式求出a值即可.
解答: 解:当a<0时,不等式组所表示的平面区域,
如图中的M,一个无限的角形区域,面积不可能为2,
故只能a≥0,
此时不等式组所表示的平面区域如图中的N,区域为三角形区域,
若这个三角形的面积为2,
则AB=4,即点B的坐标为(1,4),
代入y=ax+1得a=3.
故答案为:3.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-6x+5,x∈[1,a],并且函数f(x)的最大值为f(a),则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+ax+3,x∈[0,2]
(Ⅰ)若a=2,求f(x)的最值,并说明当f(x)取最值时的x的值;
(Ⅱ)若f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于区间[a,b]上有意义的两个函数f(x)与g(x),如果对于区间[a,b]中的任意数x均有|f(x)-g(x)|≤1,则称函数f(x)与g(x)在区间[a,b]上是密切函数,[a,b]称为密切区间.若m(x)=x2-3x+4与n(x)=2x-3在某个区间上是“密切函数”,则它的一个密切区间可能是
 

①[3,4]②[2,4]③[2,3]④[1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sin2x,-y),
b
=(m,-m+cos2x)(m∈R),且
a
+
b
=
0
,设y=f(x).
(I)求y=f(x)的表达式,并求其对称中心M的坐标;
(II)若对?x∈[0,
π
2
],f(x)>t+1恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式1-4x2≥0的解集是(区间表示)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
不共线,若存在非零实数x,y,使得
c
=
a
+2x
b
d
=-y
a
+2(2-x2
b

(1)当
c
=
d
时,求x,y的值;
(2)若
a
=(cos
π
6
,sin(-
π
6
)
),
b
=(sin
π
6
,cos
π
6
),且
c
d
,试求函数y=f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

一颗正方体骰子,共六个面的点数分别是1、2、3、4、5、6,将这颗骰子连续掷三次观察向上的点数,则三次点数和为16的概率是(  )
A、
1
6
B、
1
18
C、
1
36
D、
1
72

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式a>2sinxcosx+
3
cos2x
恒成立,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案