精英家教网 > 高中数学 > 题目详情
18.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(1)用含x的表达式表示池壁面积S;
(2)怎样设计水池能使总造价最低?最低造价是多少?

分析 (1)利用已知条件求出池底面积,然后求解池壁面积S的表达式.
(2)设水池总造价为y,推出y=(6x+$\frac{9600}{x}$)×120+1600×150,利用基本不等式求解最值即可.

解答 解:(1)由题意得水池底面积为:$\frac{4800}{3}$=1600(平方米)
池壁面积S=2(3x+3$•\frac{1600}{x}$)=6x+$\frac{9600}{x}$(平方米)
(2)设水池总造价为y,所以
y=(6x+$\frac{9600}{x}$)×120+1600×150≥2$\sqrt{6x•\frac{9600}{x}}×120+240000=297600$.
当且仅当6x=$\frac{9600}{x}$,即x=40米时,总造价最低为297600元.

点评 本题考查实际问题的处理方法,基本不等式在最值中的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)曲线C:$\frac{x^2}{4-k}-\frac{y^2}{1-k}=1$表示焦点在x轴上的椭圆,则k的范围;
(2)求以F1(-2,0),F2(2,0)为焦点,且过点$M(\sqrt{6},2)$的椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.
(1)共有多少种不同的抽法?
(2)恰好有一件是次品的抽法有多少种?
(3)至少有一件是次品的抽法有多少种?
(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.两圆x2+y2+4x-4y=0与x2+y2+2x-12=0的公共弦长等于(  )
A.4B.2$\sqrt{3}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,若a1=$\frac{3}{5}$,则a2015=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}中,a1=64,公比q≠1,a2,a3,a4又分别是某个等差数列的第7项,第3项,第1项.
(1)求an
(2)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b<0)的离心率为$\sqrt{3}$,焦点到渐近线的距离为2.
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知曲线C由抛物线y2=8x及其准线组成,则曲线C与圆(x+3)2+y2=16的交点的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若m是方程4${\;}^{x+\frac{1}{2}}$-9•2x+4=0的根,则圆锥曲线x2+$\frac{{y}^{2}}{m}$=1的离心率是$\frac{\sqrt{2}}{2}$或$\sqrt{2}$.

查看答案和解析>>

同步练习册答案