精英家教网 > 高中数学 > 题目详情
13.数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,若a1=$\frac{3}{5}$,则a2015=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 求出数列的前几项,推出数列是周期数列,然后化简求解即可.

解答 解:a1=$\frac{3}{5}$,代入到递推式中得a2=$\frac{1}{5}$,同理可得a3=$\frac{2}{5}$,a4=$\frac{4}{5}$,a5=$\frac{3}{5}$;
因此{an}为一个周期为4的一个数列.∴a2015=a4×503+3=a3=$\frac{2}{5}$.
故选:B.

点评 本题考查数列的递推关系式的应用,求出数列的周期是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},则有(  )
A.N⊆MB.M⊆∁RNC.M∩N=∅D.M∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某几何体的三视图如图所示,则其体积为56.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足an+1=an+3,a1=0,则数列{an}的通项公式可以是(  )
A.nB.2nC.3n-3D.3n+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(1)用含x的表达式表示池壁面积S;
(2)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在△ABC中∠A、∠B均为锐角,sinA=$\frac{\sqrt{5}}{5}$,sinB=$\frac{\sqrt{10}}{10}$,
(1)求cos(A+B)
(2)求∠C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(x-1)7的展开式中x2的系数为-21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三棱锥V-ABC的三条棱VA,VB,VC两两垂直,三个侧面与底面所成的二面角大小分别为α,β,γ.求证:$cosαcosβcosγ({\frac{1}{{{{cos}^2}α}}+\frac{1}{{{{cos}^2}β}}+\frac{1}{{{{cos}^2}γ}}})≥\sqrt{3}$.

查看答案和解析>>

同步练习册答案