精英家教网 > 高中数学 > 题目详情
8.已知数列{an}满足an+1=an+3,a1=0,则数列{an}的通项公式可以是(  )
A.nB.2nC.3n-3D.3n+3

分析 数列{an}是首项为0,公差为3的等差数列,由此能求出结果.

解答 解:∵数列{an}满足an+1=an+3,a1=0,
∴数列{an}是首项为0,公差为3的等差数列,
∴an=a1+(n-1)d=3n-3.
故选:C.

点评 本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.关于函数$f(x)=\sqrt{3}{cos^2}x+2sinxcosx-\sqrt{3}{sin^2}x$,有如下问题:
①$x=\frac{π}{12}$是f(x)的图象的一条对称轴;
②$?x∈R,f({\frac{π}{3}+x})=-f({\frac{π}{3}-x})$;
③将f(x)的图象向右平移$\frac{π}{3}$个单位,可得到奇函数的图象;
④?x1,x2∈R,|f(x1)-f(x2)|≥4.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标平面中,△ABC的两个顶点为B(0,-1),C(0,1),平面内两点P、Q同时满足:
①$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$;②|$\overrightarrow{QA}$|=|$\overrightarrow{QB}$|=|$\overrightarrow{QC}$|;③$\overrightarrow{PQ}$∥$\overrightarrow{BC}$.
(1)求顶点A的轨迹E的方程;
(2)过点F($\sqrt{2}$,0)作两条互相垂直的直线l1,l2,直线l1,l2与点A的轨迹E的相交弦分别为A1B1,A2B2,设弦A1B1,A2B2的中点分别为M,N.
(ⅰ)求四边形A1A2B1B2的面积S的最小值;
(ⅱ)试问:直线MN是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,阴影部分的面积为(  )
A.9B.$\frac{9}{2}$C.$\frac{13}{6}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某几何体的三视图如图所示,其中正视图、侧视图均由直角三角形中与半圆构成,俯视图由圆和内接三角形构成,根据图中的数据可得几何体的表面积为(  )
A.1+$\frac{\sqrt{3}+3π}{2}$B.$\frac{1+\sqrt{3}+π}{2}$C.$\frac{1+\sqrt{3}+3π}{2}$D.$\frac{3+\sqrt{3}+3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,若a1=$\frac{3}{5}$,则a2015=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=$\frac{x^2+a}{x+1}(a∈R)$
(Ⅰ)若f(x)在点(1,f(1))处的切线斜率为$\frac{1}{2}$,求实数a的值;
(Ⅱ)若f(x)在x=1处取得极值,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U={x|x≤9,x∈N+},集合A={1,2,3},B={3,4,5,6},则∁U(A∪B)=(  )
A.{3}B.{7,8}C.{7,8,9}D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线y=x2-1与直线y=2x+2轴围成的封闭部分的面积为(  )
A.$\frac{17}{3}$B.$\frac{22}{3}$C.$\frac{32}{3}$D.$\frac{35}{3}$

查看答案和解析>>

同步练习册答案