精英家教网 > 高中数学 > 题目详情
16.已知实数x,y,z满足x>y>z,且x=z+1,则$\frac{1}{x-y}$+$\frac{4}{y-z}$的最小值为9.

分析 由条件可得x-z=1,即x-y+y-z=1,即有$\frac{1}{x-y}$+$\frac{4}{y-z}$=($\frac{1}{x-y}$+$\frac{4}{y-z}$)•1=($\frac{1}{x-y}$+$\frac{4}{y-z}$)•(x-y+y-z),展开,运用基本不等式,即可计算得到最小值.

解答 解:∵x=z+1,
∴x-z=1,
∴$\frac{1}{x-y}$+$\frac{4}{y-z}$=($\frac{1}{x-y}$+$\frac{4}{y-z}$)•1=($\frac{1}{x-y}$+$\frac{4}{y-z}$)•(x-z)
令x-y=m(m>0),y-z=n(n>0)
∴x-z=m+n=1,
∴原式=($\frac{1}{m}$+$\frac{4}{n}$)(m+n)=$\frac{m+n}{m}$+$\frac{4(m+n)}{n}$
=1+$\frac{n}{m}$+$\frac{4m}{n}$+4≥2$\sqrt{4}$+5=9,
当且仅当$\frac{n}{m}$=$\frac{4m}{n}$即n=2m=$\frac{2}{3}$,取得最小值.
故答案为:9.

点评 本题考查基本不等式的运用,注意运用乘1法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2为钝角三角形,则该双曲线的离心率e的取值范围是(  )
A.(1,+∞)B.$(\sqrt{2}+1,+∞)$C.$(1,\sqrt{2}+1)$D.$(1,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列命题:①一条直线的倾斜角为α,则它的斜率为k=tanα;②若tanθ•cosθ>0,则θ在第一二象限;③方程y=k(x-2)表示通过(2,0)的所有直线;④第一象限角都是锐角;⑤若两圆x2+(y+1)2=1和(x+1)2+y2=r2相交,则实数r的取值范围区间是($\sqrt{2}$-1,+∞)
上述命题中所有正确的命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F2作直线l交双曲线C的右支于A、B两点,若△F1AB是以∠A为直角的等腰直角三角形,则双曲线C的离心率为$\sqrt{5-2\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果向量$\overrightarrow{{a}_{1}}$=$(\begin{array}{l}{{a}_{1}}\\{{b}_{1}}\\{{c}_{1}}\end{array})$,$\overrightarrow{{a}_{2}}$=$(\begin{array}{l}{{a}_{2}}\\{{b}_{2}}\\{{c}_{2}}\end{array})$线性相关,则$|\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}|$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C:x2+y2=1在矩阵A=$[\begin{array}{l}a,0\\ 0,b\end{array}]$(a>0,b>0)对应的变换下变为椭圆x2+$\frac{y^2}{4}$=1,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足a1=2,an+1+nan=an2+1,n∈N*
(Ⅰ)求a2,a3,a4
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于占E,则(  )
A.AD•AB=CD2B.CE•CB=AD•ABC.CE•CB=AD•DBD.CE•EB=CD2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为(  )
A.120°B.150°C.180°D.240°

查看答案和解析>>

同步练习册答案