精英家教网 > 高中数学 > 题目详情
4.已知数列{an}是等差数列,Sn是数列{an}的前n项和,S5=30,a7+a9=32.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{2}^{n}}$+$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$(n∈N*),求数列{bn}的前n项和Tn

分析 (Ⅰ)利用等差数列,等差中项求的a8=16,a3=6,即可求得d,a1,即可写出通项公式;
(Ⅱ)先求得{bn}的通项公式,采用裂项法即可求得数列{bn}的前n项和Tn

解答 解:数列{an}是等差数列,a7+a9=32,即2a8=32,a8=16,
S5=30,$\frac{({a}_{1}+{a}_{5})×5}{2}$=30,
∴a1+a5=12,2a3=12,a3=6,
a8-a3=5d=10,
d=2,
∴a1=2,
∴数列{an}的通项公式an=2n;
(2)bn=$\frac{1}{{2}^{n}}$+$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$(n∈N*),
=$\frac{1}{{2}^{n}}$+$\frac{1}{(2n-1)(2n+1)}$,
=$\frac{1}{{2}^{n}}$+$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
数列{bn}的前n项和Tn
Tn=$\frac{\frac{1}{2}-(\frac{1}{2})^{n+1}}{1-\frac{1}{2}}$+$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)],
=1-$\frac{1}{{2}^{n}}$+$\frac{1}{2}$(1-$\frac{1}{2n+1}$),
=$\frac{3}{2}$-$\frac{1}{{2}^{n}}$-$\frac{1}{2n+1}$.
Tn=$\frac{3}{2}$-$\frac{1}{{2}^{n}}$-$\frac{1}{2n+1}$.

点评 本题考查求等差数列通项公式,采用裂项法求数列的前n项和,数列是高中数学的重要内容,在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)求(x2-x+1)(1+x)8展开式中x4项的系数;
(2)求(1-x)5(1-2x)6展开式中x3项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{|x+a|,x≤0}\\{x+\frac{4}{x}+a,x>0}\end{array}\right.$,若f(0)是该函数的最小值,则实数a的取值范围是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设等比数列{an}的前n项和为Sn,已知a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(1)求数列{an}的通项公式;
(2)设bn=log2$\frac{6}{{a}_{2n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,设点A(1,0),B(0,1),C(a,b),D(c,d),若不等式$\overrightarrow{CD}$2≥(m-2)$\overrightarrow{OC}$•$\overrightarrow{OD}$+m($\overrightarrow{OC}$•$\overrightarrow{OB}$)•($\overrightarrow{OD}$•$\overrightarrow{OA}$)对任何实数a,b,c,d都成立,则实数m的最大值是$\sqrt{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示.
 x-1 4
 f(x) 2 1
下列关于函数f(x)的命题:
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为5;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中所有真命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从1,2,3,5这四个数字中任意选出两个数字,这两个数字之和是偶数的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=($\frac{1}{4}$)x-($\frac{1}{2}$)x-1,x∈[0,+∞)的值域为(  )
A.(-$\frac{5}{4}$,1]B.[-$\frac{5}{4}$,-1]C.(-1,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设复数z1,z2在复平面内对应的点关于虚轴对称,且z1=2-i,则z1•$\overline{{z}_{2}}$=(  )
A.-4+3iB.4-3iC.-3-4iD.-3+4i

查看答案和解析>>

同步练习册答案