精英家教网 > 高中数学 > 题目详情
7.四边形ABCD中,AB=BC,AD⊥DC,AC=2,∠ACD=θ,若$\overrightarrow{DB}•\overrightarrow{AC}=\frac{1}{3}$,则cos2θ等于(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{6}$

分析 根据题意,利用平面向量的线性表示与数量积运算定义,求出模长|$\overrightarrow{DC}$|,
从而得出cosθ,再利用二倍角公式计算cos2θ的值.

解答 解:如图所示,取AC的中点O,连接OD,OB,
∵AB=BC,OA=OC,
∴OB⊥AC,
∴$\overrightarrow{OB}$•$\overrightarrow{AC}$=0;
又∵$\overrightarrow{DB}$$•\overrightarrow{AC}$=$\frac{1}{3}$,$\overrightarrow{DB}$=$\overrightarrow{DO}$+$\overrightarrow{OB}$,$\overrightarrow{DO}$=$\frac{1}{2}$($\overrightarrow{DA}$+$\overrightarrow{DC}$),
∴($\overrightarrow{DO}$+$\overrightarrow{OB}$)•$\overrightarrow{AC}$=$\overrightarrow{DO}$•$\overrightarrow{AC}$+$\overrightarrow{OB}$•$\overrightarrow{AC}$
=$\frac{1}{2}$($\overrightarrow{DA}$+$\overrightarrow{DC}$)•$\overrightarrow{AC}$
=$\frac{1}{2}$($\overrightarrow{DA}$+$\overrightarrow{DC}$)•($\overline{DC}$-$\overrightarrow{DA}$)
=-$\frac{1}{2}$${\overrightarrow{DA}}^{2}$+$\frac{1}{2}$${\overrightarrow{DC}}^{2}$=$\frac{1}{3}$①,
又AD⊥DC,
∴${\overrightarrow{DA}}^{2}$+${\overrightarrow{DC}}^{2}$=${\overrightarrow{AC}}^{2}$=4②,
由①②解得${\overrightarrow{DC}}^{2}$=$\frac{7}{3}$,
∴|$\overrightarrow{DC}$|=$\sqrt{\frac{7}{3}}$,
∴cosθ=$\frac{|\overrightarrow{DC}|}{|\overrightarrow{AC}|}$=$\frac{\sqrt{\frac{7}{3}}}{2}$;
∴cos2θ=2cos2θ-1=2×$\frac{7}{12}$-1=$\frac{1}{6}$.
故选:D.

点评 本题考查了平面向量的线性运算与数量积运算问题,也考查了三角形的性质与倍角公式的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(理)试卷(解析版) 题型:解答题

选修4—1:几何证明选讲

如图,△是圆的内接三角形,的延长线上一点,且切圆于点

(1)求证:

(2)若,且,求的长.

查看答案和解析>>

科目:高中数学 来源:2017届宁夏高三上月考一数学(文)试卷(解析版) 题型:选择题

实数的大小关系正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在极坐标系中,曲线C1的极坐标方程为ρ=4cosθ,曲线C2的极坐标方程为ρ=4sinθ,以极点O为坐标原点,极轴为x的正半轴建立平面直角坐标系xOy
(Ⅰ)求C1和C2的参数方程
(Ⅱ)已知射线l1:θ=α(0$<α<\frac{π}{2}$),将l1逆时针旋转$\frac{π}{6}$得到l2;θ=$α+\frac{π}{6}$,且l1与C1交于O,P两点,l2与C2交于O,Q两点,求|OP|•|OQ|取得最大值时点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“a=1”是“直线ax+y+1=0与直线x+ay-1=0平行”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若某函数模型相对一组数据的残差平方和为8,其相关指数为0.95,则总偏差平方和为160.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知奇函数f(x)在R上是减函数,g(x)=x•f(x),若a=g(-log39),b=g(20.5),c=g(3),则a,b,c的大小关系为(  )
A.a<b<cB.c<b<aC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,输出的S值为(  )
A.16B.8C.64D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,A、B、C的对边分别为a、b、c,求证:对于任意实数θ,恒有acos(θ-B)+bcos(θ+A)=ccosθ.

查看答案和解析>>

同步练习册答案