精英家教网 > 高中数学 > 题目详情
6.△ABC外接圆的半径为2,圆心为O,且2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|,则$\overrightarrow{CA}$•$\overrightarrow{CB}$的值是(  )
A.12B.11C.10D.9

分析 运用向量的三角形法则,以及外心的特点,可得O为BC的中点,A为直角,再由勾股定理和向量的数量积的定义,计算即可得到.

解答 解:2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,即有2$\overrightarrow{OA}$+$\overrightarrow{OB}$-$\overrightarrow{OA}$+$\overrightarrow{OC}$-$\overrightarrow{OA}$=$\overrightarrow{0}$,
可得$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,则O为BC的中点,
即有AB⊥AC,
又|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|,
则△ABO为等边三角形,且边长为2,
由勾股定理可得,AC=$\sqrt{B{C}^{2}-A{B}^{2}}$=2$\sqrt{3}$,
则$\overrightarrow{CA}$•$\overrightarrow{CB}$=|$\overrightarrow{CA}$|•|$\overrightarrow{CB}$|•cos∠ACB=2$\sqrt{3}$×4×$\frac{\sqrt{3}}{2}$=12.
故选A.

点评 本题考查向量的三角形法则和向量的数量积的定义的运用,同时考查三角形的外心的概念和勾股定理的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,由四个边长为1的等边三角形拼成一个边长为2的等边三角形,各项点依次为,A1,A2,A3,…A6则$\overrightarrow{{A_1}{A_2}}•\overrightarrow{{A_j}{A_i}},({i,j∈[{1,2,3,…6}]})$的值组成的集合为(  )
A.{-2,-1,0,1,2}B.$\left\{{-2,-1,-\frac{1}{2},0,\frac{1}{2},1,2}\right\}$
C.$\left\{{-\frac{3}{2},-1,-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2}}\right\}$D.$\left\{{-2,-\frac{3}{2},-1,-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2},2}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设△ABC内角A、B、C所对边分别为a、b、c,bc=2b2+2c2-2a2,a=1且sinB+sinC=$\frac{\sqrt{10}}{2}$,则b=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设P是边长为$\sqrt{3}$的正△ABC所在平面内一点,且PA=PB=PC=2,则点P到平面ABC的距离为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.公差不为零的等差数列{an}的前n项和为Sn,若a3是a2与a6的等比中项,则$\frac{S_3}{a_3}$=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=mx-$\frac{m}{x}$,g(x)=2lnx.
(Ⅰ)当m=1时,判断方程f(x)=g(x)在区间(1,+∞)上有无实根.
(Ⅱ)若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18. 如图,AB是⊙O的直径,C、F是⊙O上的点,AC是∠BAF的平分线,过点C作CD⊥AF,交AF的延长线于点D.
(1)求证:CD是⊙O的切线.
(2)过C点作CM⊥AB,垂足为M,求证:AM•MB=DF•DA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是一算法的程序框图,若此程序运行结果为s=55,则在判断框中应填入关于k的判断条件是(  )
A.k≤11B.k≤10C.k≤9D.k≤8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n∈N*),则S6=(  )
A.44B.45C.$\frac{1}{3}$(46-1)D.$\frac{{4}^{5}}{3}$

查看答案和解析>>

同步练习册答案