精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-ae2x+(2-a)ex+x,其中a为常数.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)设函数h(x)=ln(
2
a
-ex)+2aex-x-2(a>0),求使得h(x)≤0成立的x的最小值;
(Ⅲ)已知方程f(x)=0的两个根为x1,x2,并且满足x1<x2<ln
2
a
.求证:a(ex1+ex2)>2.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)先求出f′(x)=(2ex+1)(-aex+1),再讨论①当a≤0时,②当a>0时的情况,从而求出单调区间,
(Ⅱ) 由已知,函数h(x)的定义域为(-∞,ln
2
a
),且h′(x)=
2(aex-1)2
aex-2
,当x∈[ln
1
a
,ln
2
a
)时,h(x)≤0,进而求出x的最小值为ln
1
a

(Ⅲ) 由(Ⅰ)知当a≤0时,由f(ln(
2
a
-ex1 ))-f(x1 )=ln(
2
a
-ex1)+2aex1-x1-2>0,可得ln(
2
a
-ex1 )<x2.从而a(ex1+ex2)>2.
解答: 解:(Ⅰ)∵f′(x)=(2ex+1)(-aex+1),
①当a≤0时,f′(x)>0,
∴函数f(x)在(-∞,+∞)上为单调递增函数;
②当a>0时,
令f′(x)>0,解得:x<ln
1
a

令f′(x)<0,解得:x>ln
1
a

∴函数f(x)在(-∞,ln
1
a
)上为单调递增,在(ln
1
a
,+∞)上为单调递减函数.
(Ⅱ) 由已知,函数h(x)的定义域为(-∞,ln
2
a
),
且h′(x)=
2(aex-1)2
aex-2

∵aex-2<0,
∴h(x)在定义域内为递减函数,
又∵h(ln
1
a
)=0,当x∈[ln
1
a
,ln
2
a
)时,h(x)≤0,
∴x的最小值为ln
1
a

(Ⅲ) 由(Ⅰ)知当a≤0时,
函数f(x)在(-∞,+∞)上为单调递增函数,方程至多有一根,
∴a>0,f(ln
1
a
)>0,x1<ln
1
a
<x2
又∵f(ln(
2
a
-ex1 ))-f(x1 )=ln(
2
a
-ex1)+2aex1-x1-2>0,
∴f(ln(
2
a
-ex1 ))>f(x1)=0,
可得ln(
2
a
-ex1 )<x2
2
a
-ex1ex2
∴a(ex1+ex2)>2.
点评:本题考察了函数的单调性,函数的最值问题,导数的应用,不等式的证明,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U为R,已知A={x|1<x<7},B={x|x<3或x>5},求:
(1)A∪B;
(2)A∩B;   
(3)A∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

A高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A高校自主招生考试,已知该生在每道程序中通过的概率均为
3
4
,每道程序中得优、良、中的概率分别为p1
1
2
、p2
(1)求学生甲不能通过A高校自主招生考试的概率;
(2)设X为学生甲在三道程序中获优的次数,求X的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,a1=2,an+1=3Sn
(1)求数列{an}的通项公式;
(2)令bn=
n   当n为奇数
an 当n为偶数
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(0,
3
),曲线C的参数方程为
x=
3
cosφ
y=3sinφ
(φ为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
3
2cos(θ-
π
6
)

(Ⅰ)判断点P与直线l的位置关系,说明理由;
(Ⅱ)设直线l与曲线C的两个交点为A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l过点(3,
5
)且倾斜角为
π
4
,在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,x轴的正半轴为极轴)中,圆C的方程为p=2
5
sinθ.
(1)求直线l的参数方程及圆C的直角坐标方程;
(2)设圆C与直线l交于A,B两点,若点P的坐标为(3,
5
),求|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
BC=
3
,沿对角线BD将△BCD折起,使点C移到P点,且P在平面ABD上的射影O恰好在AB上.

(1)求证:PB⊥PA;
(2)求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;
②残差平方和越小的模型,拟合效果越好;
③用相关指数R2来刻画回归效果,R2越小,说明模型拟合效果越好;
④随机误差e是衡量预报精确度的一个量,它满足E(e)=0.
其中正确的是
 
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=
k
3
,k∈Z},B={x|x=
k
6
,k∈Z},则集合A与B关系为
 

查看答案和解析>>

同步练习册答案