精英家教网 > 高中数学 > 题目详情
17.如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆区域,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币随机完全落在纸板内,则硬币与小圆无公共点的概率为$\frac{3}{4}$.

分析 由题意可得,硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于7.硬币与小圆无公共点,硬币圆心距离小圆圆心要大于2,先求出硬币落在纸板上的面积,然后再求解硬币落下后与小圆没交点的区域的面积,代入古典概率的计算公式可求.

解答 解:记“硬币落下后与小圆无公共点”为事件A
硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,其面积为16π
无公共点也就意味着,硬币的圆心与纸板的圆心相距超过2cm
以纸板的圆心为圆心,作一个半径2cm的圆,硬币的圆心在此圆外面,则硬币与半径为1cm的小圆无公共点,此半径为2的圆面积是4π
所以有公共点的概率为$\frac{4}{16}$=$\frac{1}{4}$,无公共点的概率为P(A)=1-$\frac{1}{4}$=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题主要考查了几何概率的计算公式,用到的知识点为:概率=相应的面积与总面积之比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若直线y=kx+2与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1相切,则斜率k的值是(  )
A.$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$±\frac{\sqrt{6}}{3}$D.$±\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设${({2x+\frac{1}{2}})^{10}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{10}}{x^{10}}$.
(1)求a0+a1+a2+…+an
(2)记an(0≤n≤10)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x3456
y2.5344.5
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\overrightarrow{b}$x+$\overrightarrow{a}$
(2)已知该厂技改前50吨甲产品的生产能耗为45吨标准煤.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产能耗比技改前降低了多少吨标准煤?
(参考公式:$\overrightarrow{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F交抛物线C于A、B两点.且以AB为直径的圆M与直线y=-1相切于点N.
(1)求C的方程;
(2)若圆M与直线x=-$\frac{3}{2}$相切于点Q,求直线l的方程和圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,过抛物线y2=2px(p>0)的焦点F的直线l依次交抛物线及其准线与点A,B,C,若BC|=2|BF|,且|AF|=3,则抛物线的方程是y2=3x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点P(sinα,cosα)在第三象限,则角α的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形.
(Ⅰ)求C的方程;
(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,试问直线AE是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式$\frac{1}{x-1}$≤1的解集为(  )
A.(-∞,1)∪[2,+∞)B.(-∞,0]∪(1,+∞)C.(1,2]D.[2,+∞)

查看答案和解析>>

同步练习册答案