精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=loga(x-1),g(x)=loga(4-2x)(a>0且a≠1).
(Ⅰ)求函数f(x)-g(x)的定义域;
(Ⅱ)若f(x)>g(x),求x的取值范围.

分析 (Ⅰ)根据对数函数的性质求出函数的定义域即可;(Ⅱ)通过讨论a的范围,得到关于x的不等式组,解得即可.

解答 解:(Ⅰ)由题意可知$\left\{\begin{array}{l}{x-1>0}\\{4-2x>0}\end{array}\right.$,解得:1<x<2,
∴函数f(x)-g(x)的定义域(1,2).…(4分)
(Ⅱ)当a>1时,满足$\left\{\begin{array}{l}{x-1>4-2x}\\{1<x<2}\end{array}\right.$,解得:$\frac{5}{3}$<x<2,…(7分)
当0<a<1时,满足$\left\{\begin{array}{l}{x-1<4-2x}\\{1<x<2}\end{array}\right.$,解得:1<x<$\frac{5}{3}$,…(10分)
所以当a>1时,x∈($\frac{5}{3}$,2);
当0<a<1时,x∈(1,$\frac{5}{3}$).…(12分)

点评 本题考查了求函数的定义域问题,考查对数函数的性质以及分类讨论思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{1}{\sqrt{6+5x-{x}^{2}}}$的单调递增区间是(  )
A.(-∞,$\frac{5}{2}$)B.($\frac{5}{2}$,+∞)C.(-1,$\frac{5}{2}$)D.($\frac{5}{2}$,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:“?x∈N,都有$\frac{1}{{x}^{2}+x+1}$>0”则¬p为(  )
A.?x∈N,使得$\frac{1}{{x}^{2}+x+1}$≤0B.?x0∈N,使得$\frac{1}{{{x}_{0}}^{2}+{x}_{0}+1}$≤0
C.?x∈N,使得x2+x+1≤0D.?x0∈N,使得x02+x0+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数x,y满足$\left\{\begin{array}{l}x-2≤0\\ y-1≤0\\ x+2y-2≥0\end{array}\right.,则z={2^{x-y}}$的取值范围是(  )
A.[$\frac{1}{4}$,$\frac{1}{2}$]B.[$\frac{1}{4}$,2]C.[$\frac{1}{2}$,4]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow a=(1,2),\overrightarrow b=(-3,4),\overrightarrow c=\overrightarrow a+λ\overrightarrow b(λ∈R)$.
(1)λ何值时,$|\overrightarrow c|$最小?此时$\overrightarrow c$与$\overrightarrow b$的位置关系如何?
(2)λ何值时,$\overrightarrow c$与$\overrightarrow a$的夹角的余弦值最大?此时$\overrightarrow c$与$\overrightarrow a$的位置关系如何?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知f(1-$\sqrt{x}$)=x,求f(x)的解析式;
(2)已知一次函数y=f(x)满足f(f(x))=4x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题:
①直线y=x与函数f(x)的图象有两个交点;
②函数f(x)的值域为(-1,1);
③函数f(x)在定义域上是周期为2的函数;
④f(2016)+f(-2017)=0.
其中正确的有①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.A={x|x2-4x-5≤0},B={x||x|≤2},则A∩B=(  )
A.[-2,5]B.[-2,2]C.[-1,2]D.[-2,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,三棱锥P-ABC中,PA⊥底面ABC,AB=AC=AP=1,BC=$\sqrt{2}$,D是BC的中点,则图中直角三角形的个数是8.

查看答案和解析>>

同步练习册答案