【题目】已知函数f(x)= sin2x﹣2cos2x,下面结论中错误的是( )
A.函数f(x)的最小正周期为π
B.函数f(x)的图象关于x= 对称
C.函数f(x)的图象可由g(x)=2sin2x﹣1的图象向右平移 个单位得到
D.函数f(x)在区间[0, ]上是增函数
【答案】C
【解析】解:f(x)= sin2x﹣2cos2x = sin2x﹣1﹣cos2x=2sin(2x﹣ )﹣1,
由周期公式可得T= =π,选项A正确;
由2x﹣ =kπ+ 可得x= + ,k∈Z,
故当k=0时,可得函数一条对称轴为x= ,选项B正确;
g(x)=2sin2x﹣1的图象向右平移 个单位得到y=2sin2(x﹣ )﹣1=2sin(2x﹣ )﹣1的图象,
而不是f(x)=2sin(2x﹣ )﹣1的图象,选项C错误;
由kπ﹣ ≤2x﹣ ≤kπ+ 可得 kπ﹣ ≤x≤ kπ+ ,k∈Z,
∴函数的单调递增区间为[ kπ﹣ , kπ+ ],
显然f(x)在区间[0, ]上是增函数,选项D正确.
故选:C.
科目:高中数学 来源: 题型:
【题目】已知为圆上一动点,圆心关于轴的对称点为,点分别是线段上的点,且.
(1)求点的轨迹方程;
(2)直线与点的轨迹只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于两点,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,设四棱柱的外接球的球心为O,动点P在正方形ABCD的边上,射线OP交球O的表面于点M,现点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径长为( )
A.
B.2 π
C.
D.4 π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】重庆一中为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的赛,两队各由4名选手组成,每局两队各派一名选手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市地产数据研究所的数据显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.
(1)地产数据研究所发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试求关于的回归直线方程;
(2)若政府不调控,按照3月份至7月份房价的变化趋势预测12月份该市新建住宅的销售均价.
参考数据:,,;
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】非空数集A如果满足:①0A;②若对x∈A,有 ∈A,则称A是“互倒集”.给出以下数集: ①{x∈R|x2+ax+1=0}; ②{x|x2﹣4x+1<0};③{y|y= }.
其中“互倒集”的个数是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,证明: ≤Tn<1(n∈N+).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若 且sinC=cosA (Ⅰ)求角A、B、C的大小;
(Ⅱ)函数f(x)=sin(2x+A)+cos(2x﹣ ),求函数f(x)单调递增区间,指出它相邻两对称轴间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1的左焦点F1的坐标为(﹣ ,0),F2是它的右焦点,点M是椭圆C上一点,△MF1F2的周长等于4+2 .
(1)求椭圆C的方程;
(2)过定点P(0,2)作直线l与椭圆C交于不同的两点A,B,且OA⊥OB(其中O为坐标原点),求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com