分析 由已知得x>0,y>0,x+y=4,由基本不等式,得xy≤$(\frac{x+y}{2})^{2}$=4,由此能示出三棱锥O-ABC的体积的最大值.
解答 解:∵三棱锥O-ABC中,OA=x,OB=y,x+y=4,
∴x>0,y>0,x+y=4,
由基本不等式,得:
xy≤$(\frac{x+y}{2})^{2}$=4,
∵OA,OB,OC两两互相垂直,OC=1,
∴三棱锥O-ABC的体积V=$\frac{1}{3}×\frac{1}{2}×OA×OB×OC=\frac{1}{6}xy≤\frac{2}{3}$,
三棱锥O-ABC的体积的最大值为$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.
点评 本题考查三棱锥的体积的最大值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | 2 015,2 013 | B. | 2 013,2 015 | C. | 2 015,2 015 | D. | 2 015,2 014 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{6}{5}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{1}{5})$ | B. | ($\frac{1}{5},\frac{1}{4}$) | C. | ($\frac{1}{5},\frac{1}{3}$) | D. | [l,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com