精英家教网 > 高中数学 > 题目详情
19.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-2k有3个零点,则实数k的取值范围是(  )
A.[0,$\frac{1}{5})$B.($\frac{1}{5},\frac{1}{4}$)C.($\frac{1}{5},\frac{1}{3}$)D.[l,3]

分析 根据已知条件便可画出f(x)在区间[-1,3]上的图象,而函数g(x)的零点个数便是函数f(x)图象和函数y=kx+2k的个数,而k便是函数y=kx+2k在y轴上的截距,所以结合图形,讨论k>0,k<0,k=0的情况,并求出对应的k的取值范围即可.

解答 解:根据已知条件知函数f(x)为周期为2的周期函数;
且x∈[-1,1]时,f(x)=|x|;
而函数g(x)的零点个数便是函数f(x)和函数y=kx+2k的交点个数;
∴(1)若k>0,则如图所示:

当y=kx+2k经过点(1,1)时,k=$\frac{1}{3}$;
当经过点(3,1)时,k=$\frac{1}{5}$;
∴$\frac{1}{5}$<k<$\frac{1}{3}$;
(2)若k<0,即函数y=kx+k在y轴上的截距小于0,显然此时该直线与f(x)的图象不可能有三个交点;
即这种情况不存在;
(3)若k=0,得到直线y=0,显然与f(x)图象只有两个交点;
综上得实数k的取值范围是($\frac{1}{5}$,$\frac{1}{3}$);
故选:C.

点评 考查周期函数的概念,偶函数图象的特点,直线在y轴上截距的概念,以及函数零点的概念,函数零点和对应函数交点的关系,以及数形结合解题的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.满足不等式m2-4m-12≤0的实数m使关于x的一元二次方程x2-4x+m2=0有实数根的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线E:x2+ny2=n2,直线l:y=kx+m(其中|k|≤$\frac{\sqrt{2}}{2}$)与曲线E相交于A、B两点.
(1)若n∈R,试判断曲线E的形状;
(2)若n=2,以线段OA、OB为邻边作平行四边形OAPB,其中顶点P在曲线E上,O为坐标原点,求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{3^{x+1}}(x≤0)\\ \frac{1}{x-1}(x>0)\end{array}$若f(x)≥1的解集为[-1,0]∪(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.三棱锥O-ABC中,OA,OB,OC两两互相垂直,OC=1,OA=x,OB=y,若x+y=4,则三棱锥O-ABC的体积的最大值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow a=(1,2),\overrightarrow b=(-3,4),\overrightarrow c=\overrightarrow a+λ\overrightarrow b(λ∈R)$.
(1)λ何值时,$|\overrightarrow c|$最小?此时$\overrightarrow c$与$\overrightarrow b$的位置关系如何?
(2)λ何值时,$\overrightarrow c$与$\overrightarrow a$的夹角的余弦值最大?此时$\overrightarrow c$与$\overrightarrow a$的位置关系如何?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用数字1,2,3,4组成没有重复数字的三位数共24个,则这24个三位数的个位数字之和为(  )
A.10B.30C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=22x-7-a4x-1(a>0且a≠1).
(1)当a=$\frac{{\sqrt{2}}}{2}$时,求不等式f(x)<0的解集;
(2)当x∈[0,1]时,f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛物线顶点在原点,对称轴是x轴,点(-5,2$\sqrt{5}$)到焦点的距离为6,则抛物线方程为(  )
A.y2=-2xB.y2=-4xC.y2=2xD.y2=-4x或y2=-36x

查看答案和解析>>

同步练习册答案