精英家教网 > 高中数学 > 题目详情
12.满足不等式m2-4m-12≤0的实数m使关于x的一元二次方程x2-4x+m2=0有实数根的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

分析 解不等式,利用方程有实数根的条件,分别求出m的范围,即可得出结论.

解答 解:由m2-4m-12≤0,可得-2≤m≤6,区间长度为8;
关于x的一元二次方程x2-4x+m2=0有实数根,△=16-4m2≥0,∴-2≤m≤2,区间长度为4,
∴所求概率为$\frac{4}{8}$=$\frac{1}{2}$,
故选:A.

点评 本题考查几何概型,考查概率的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ln(1+x),g(x)=a•$\frac{{{x^2}+2x}}{1+x}$(a∈R).
(1)若函数h(x)=f(x)-g(x)在定义域内单调递减,求a的取值范围;
(2)设n∈N*,证明:(1+$\frac{1}{n^2}}$)(1+$\frac{2}{n^2}}$)…(1+$\frac{n}{n^2}}$)<e${\;}^{\frac{1}{4}}}$(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知单位向量${\vec e_1}$,${\vec e_2}$的夹角为α,且cosα=$\frac{1}{3}$,若向量$\vec a$=3${\vec e_1}$-2${\vec e_2}$,则|$\vec a$|=(  )
A.2B.3C.9D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知不恒为零的函数f(x)=xlog2(ax+$\sqrt{a{x^2}+b}$)是偶函数.
(1)求a,b的值;
(2)求不等式$\frac{{\sqrt{3}}}{3}$f(x-2)<log2(2+$\sqrt{3}$)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.计算机执行如图的程序段后,输出的结果是(  )
A.2 015,2 013B.2 013,2 015C.2 015,2 015D.2 015,2 014

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(2,λ),若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角,则λ的取值范围为(-$\frac{2}{3}$,6)∪(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1+x),那么f(-$\frac{9}{2}$)=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两人在相同条件下各射击10次,每次命中的环数如表:
86786591047
6778678795
(1)分别计算以上两组数据的平均数;
(2)分别计算以上两组数据的方差;
(3)根据计算的结果,对甲乙两人的射击成绩作出评价.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-2k有3个零点,则实数k的取值范围是(  )
A.[0,$\frac{1}{5})$B.($\frac{1}{5},\frac{1}{4}$)C.($\frac{1}{5},\frac{1}{3}$)D.[l,3]

查看答案和解析>>

同步练习册答案