精英家教网 > 高中数学 > 题目详情
5.函数f(x)=log2|-2x+a|在区间(3,4)上单调,则a的取值范围是(  )
A.(6,8)B.[8,+∞)C.(-∞,6)∪(8,+∞)D.(-∞,6]∪[8,+∞)

分析 由题意可得y=|-2x+a|在区间(3,4)上单调,从而可得-6+a≤0或-8+a≥0,从而解得.

解答 解:∵函数f(x)=log2|-2x+a|在区间(3,4)上单调,
∴y=|-2x+a|在区间(3,4)上单调,
∴-6+a≤0或-8+a≥0,
即a≤6或a≥8;
故选:D.

点评 本题考查了函数的性质的判断与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天时间与水深(单位:米)的关系表:
时刻0:003:006:009:0012:0015:0018:0021:0024:00
水深10.013.09.97.010.013.010.17.010.0
(1)请用一个函数来近似描述这个港口的水深y与时间t的函数关系;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可).某船吃水深度(船底离地面的距离)为6.5米.
Ⅰ)如果该船是旅游船,1:00进港希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?
Ⅱ)如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-3)2+(y-2)2=r2(r>0).
(1)若点P(4,-1)在圆C外,求r的取值范围;
(2)若直线l:y=x+2被圆C截得的弦AB的长等于该圆的半径,求圆C的方程;
(3)在(2)的条件下,已知直线m:y=x+n被圆截得的弦与圆心C构成三角形CDE.问△CDE的面积有没有最大值?若有最大值,求出直线m的方程;若没有最大值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知关于x的方程loga(x-3)+1=loga(x+2)+loga(x-1)有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1的弦过点P(3,2),且被点P平分,求此弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1-ABCE的主视图与左视图.
(1)求证:直线BE⊥平面D1AE;
(2)求点A到平面D1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知抛物线C的顶点在坐标原点,焦点为F(1,0),过焦点F的直线l与抛物线C相交于A、B两点,若直线l的倾斜角为45°,则弦AB的中点坐标为(3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+1|+|x-2|.命题p:关于x的不等式f(x)<a的解集不是空集;命题q:函数 y=log2[(4-a)x-3]在其定义域上是减函数.
(1)解不等式f(x)≤5;
(2)若命题“p且q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=2x3-3x2-12x+5在[-3,3]上的最大值是12.

查看答案和解析>>

同步练习册答案