【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;
(1)将表示为的函数;
(2)若,求总用氧量的取值范围.
科目:高中数学 来源: 题型:
【题目】函数,关于的不等式的解集为.
(Ⅰ)求、的值;
(Ⅱ)设.
(i)若不等式在上恒成立,求实数的取值范围;
(ii)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(,)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,不可能成立的是()
A.没有最大元素, 有一个最小元素B.没有最大元素, 也没有最小元素
C.有一个最大元素, 有一个最小元素D.有一个最大元素, 没有最小元素
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定于符号函数,已知,,
(1)求关于的表达式,并求的最小值;
(2)当时,函数在上有唯一零点,求的取值范围;
(3)已知存在,使得对任意恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数在内,且其频率满足(其中,).
(1)求的值;
(2)请画出这20名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组区间的中点值作代表);
(3)将此样本的频率估计为总体的概率,随机调查4名该校的大一理工科新生,记调查的4名大一理工科新生中“高考数学分数不低于130分”的人数为随机变量,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)设个正数满足(且).
(1)当时,证明:;
(2)当时,不等式也成立,请你将其推广到(且)个正数的情形,归纳出一般性的结论并用数学归纳法证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左,右焦点分别为, ,离心率为, 是椭圆上的动点,当时, 的面积为.
(1)求椭圆的标准方程;
(2)若过点的直线交椭圆于, 两点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com