精英家教网 > 高中数学 > 题目详情

【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;

(1)将表示为的函数;

(2)若,求总用氧量的取值范围.

【答案】(1);(2)

【解析】

1)先由题意,得到下潜所需时间为分钟,返回所用时间为分钟,再由题中数据,即可求出结果;

2)先由基本不等式求出最小值,再令,用单调性的定义,判断上的单调性,从而可求出最大值,即可得出结果.

1)由题意,下潜所需时间为分钟,返回所用时间为分钟,

所以总用氧量

2)因为,由(1)得 当且仅当,即时,等号成立,即

时,任取,且

因为,所以

因此

所以函数上单调递减;

同理,上单调递增;

所以

,所以总用氧量的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P123)、P2-45)和A-12),则过点A且与点P1P2距离相等的直线方程为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,关于的不等式的解集为.

)求的值;

)设.

i)若不等式上恒成立,求实数的取值范围;

ii)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由无理数引发的数学危机一直延续到19世纪.直到1872,德国数学家戴德金从连续性的要求出发,用有理数的分割来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为无理的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集,且满足中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,不可能成立的是(

A.没有最大元素, 有一个最小元素B.没有最大元素, 也没有最小元素

C.有一个最大元素, 有一个最小元素D.有一个最大元素, 没有最小元素

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定于符号函数,已知

1)求关于的表达式,并求的最小值;

2)当时,函数上有唯一零点,求的取值范围;

3)已知存在,使得对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数内,且其频率满足(其中).

(1)求的值;

(2)请画出这20名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组区间的中点值作代表);

(3)将此样本的频率估计为总体的概率,随机调查4名该校的大一理工科新生,记调查的4名大一理工科新生中“高考数学分数不低于130分”的人数为随机变量,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)个正数满足).

(1)当,证明:

(2)当,不等式也成立,请你将其推广到个正数的情形,归纳出一般性的结论并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点分别为 ,离心率为 是椭圆上的动点,当时, 的面积为.

(1)求椭圆的标准方程;

(2)若过点的直线交椭圆 两点,求面积的最大值.

查看答案和解析>>

同步练习册答案