精英家教网 > 高中数学 > 题目详情
11.下列问题中,应采用哪种抽样方法(  )
①有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取10个入样;
②有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样;
③有甲厂生产的300个篮球,抽取10个入样;
④有甲厂生产的300 个篮球,抽取50个入样.
A.分层抽样、分层抽样、抽签法、系统抽样
B.分层抽样、分层抽样、随机数法、系统抽样
C.抽签法、分层抽样、随机数法、系统抽样
D.抽签法、分层抽样、系统抽样、随机数法

分析 如果总体和样本容量都很大时,采用随机抽样会很麻烦,就可以使用系统抽样;如果总体是具有明显差异的几个部分组成的,则采用分层抽样;从包含有N个个体的总体中抽取样本量为n个样本,总体和样本容量都不大时,采用随机抽样.

解答 解:总体容量较小,用抽签法;总体由差异明显的两个层次组成,需选用分层抽样;总体容量较大,样本容量较小,宜用随机数法;总体容量较大,样本容量也较大,宜用系统抽样,
故选C.

点评 本题考查收集数据的方法,考查系统抽样,分层抽样,简单随机抽样的合理运用,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$f(x)=lg\frac{1-x}{1+x}$.
(1)判断f(x)的奇偶性,并说明理由;
(2)设f(x)的定义域为D,a,b∈D.求$f(a)+f(b)-f(\frac{a+b}{1+ab})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在长为6cm的线段上任取一点P,使点P到线段两段点的距离都大于2cm的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.三角形△ABC三边a,b,c满足${a^2}+\frac{1}{2}ab={c^2}-{b^2}$,则角C的值为$π-arccos\frac{1}{4}$.(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,扇形AOB,圆心角AOB的大小等于$\frac{π}{3}$,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.设∠COP=θ(θ∈(0,$\frac{π}{3}$)),则△POC周长与角θ的函数关系式f(θ)=$\frac{4\sqrt{3}}{3}$sin($θ+\frac{π}{3}$)+2,θ∈(0,$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个口袋内有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球,
(1)共有多少种不同的结果?
(2)摸出2个黑球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,点P(x,y)是椭圆$\frac{x^2}{4}+{y^2}=1$上的一个动点,求z=3x+8y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,三角形ADP中AD=AP=5,PD=6,M、N分别是AB,PC的中点.
(1)求证:MN∥平面PAD.
(2)求异面直线MN与AD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知⊙O的直径AB垂直于弦CD于E,连结 AD、BD、OC、OD,且 OD=5.
(1)求证:∠CDB=∠ADO;
(2)若sin∠BAD=$\frac{3}{5}$,求 CD 的长.

查看答案和解析>>

同步练习册答案