精英家教网 > 高中数学 > 题目详情
交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从昆明市交通指挥中心随机选取了二环以内的50个交通路段,依据其交通指数数据绘制的直方图如右.

(1)据此估计,早高峰二环以内的三个路段至少有一个是严重拥堵的概率是多少?
(2)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.
考点:频率分布直方图,离散型随机变量的期望与方差
专题:图表型,概率与统计
分析:(1)由频率分布直方图知“一个路段严重拥堵”的概率为0.1,三个路段“至少一个路段严重拥堵”的对立事件是“三个路段都不严重拥堵”,
求得对立事件的概率,根据事件与其对立事件的概率和为1求三个路段至少有一个是严重拥堵的概率;
(2)根据直方图列出所有时间的分布列,代入期望公式计算.
解答: 解:(1)设事件A“一个路段严重拥堵”,则P(A)=0.1,
事件B“至少一个路段严重拥堵”,则P(
.
B
)=(1-P(A))3=0.729,
P(B)=1-P(
.
B
)=1-0.729=0.271.
∴三个路段至少有一个是严重拥堵的概率是0.271;
(2)分布列如下表:
X 30 36 42 60
P 0.1 0.44 0.36 0.1
EX=30×0.1+36×0.44+0.36×42+60×0.1=39.96,
此人经过该路段所用时间的数学期望是39.96分钟.
点评:本题考查了频率分布直方图及离散型随机变量的分布列与方差,是概率统计的常见题型,本题利用了求对立事件的概率来求事件的概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列四个命题;
①函数g(x)=1+
2
2x-1
是奇函数;
②函数f(x)=log2x满足:对于任意x1,x2∈R,且x1≠x2,都有f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)]

③若函数f(x)满足f(x-1)=-f(x+1),f(1)=2,则f(7)=-2;
④设x1,x2是关于x的方程|logax|=k(a>0,a≠1,k>0)的两根,则x1x2=1;
其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知
OA
=(-1,t),
OB
=(2,2),若∠ABO=90°,则t=(  )
A、2B、4C、5D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y-1=k(x-3)被圆(x-2)2+(y-2)2=4所截得的最短弦长等于(  )
A、
3
B、2
3
C、2
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角坐标平面内一动点P到点F(2,0)的距离与直线x=-2的距离相等.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点M(m,0)(m>0)作直线与曲线C相交于A,B两点,问:是否存在一条垂直于x轴的直线与以线段AB为直径的圆始终相切?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y),点Q在曲线C:y2=2x上.
(1)若点Q在第一象限内,且|PQ|=2,求点Q的坐标;
(2)求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,PA=PD=AD且侧面PAD⊥底面ABCD,若E、F分别为PC、BD的中点.
(Ⅰ)求证:EF∥平面PAD; 
(Ⅱ)在线段PB上是否存在点M,使得二面角A-MC-B为直二面角,若存在,求出BM的长,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=90°且PA=AB=BC,DC=2AB点E是棱PB上的动点.
(Ⅰ)当PD∥平面EAC时,确定点E在棱PB上的位置;
(Ⅱ)在(Ⅰ)的条件下,求二面角E-AC-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线(c-d)(x-b)-(a-b)(y-d)=0与曲线(x-a)(x-b)-(y-c)(y-d)=0的交点个数是
 

查看答案和解析>>

同步练习册答案