精英家教网 > 高中数学 > 题目详情
已知点P(x,y),点Q在曲线C:y2=2x上.
(1)若点Q在第一象限内,且|PQ|=2,求点Q的坐标;
(2)求|PQ|的最小值.
考点:直线与圆锥曲线的综合问题
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)利用两点间的距离公式可得|PQ|=
(x-2)2+y2
=2
,联立即可解得点Q的坐标.
(2)|PQ|=
(x-2)2+y2
,其中y2=2x.可得|PQ|2=(x-2)2+2x=x2-2x+4=(x-1)2+3(x≥0)利用二次函数的单调性即可得出.
解答: 解:设Q(x,y)(x>0,y>0),y2=2x
(1)由已知条件得|PQ|=
(x-2)2+y2
=2
…(2分)
将y2=2x代入上式,并变形得,x2-2x=0,解得x=0(舍去)或x=2…(4分)
当x=2时,y=±2
只有x=2,y=2满足条件,所以点Q的坐标为(2,2)…(6分)
(2)|PQ|=
(x-2)2+y2
其中y2=2x…7分
|PQ|2=(x-2)2+2x=x2-2x+4=(x-1)2+3(x≥0)…(10分)
当x=1时,|PQ|min=
3
…(12分)
(不指出x≥0,扣1分)
点评:本题考查了两点间的距离公式、二次函数的单调性、方程的思想方法,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;  
②x=4是函数y=f(x)图象的一条对称轴;  
③函数y=f(x)在区间[6,8]上单调递增;
④若方程f(x)=0.在区间[-2,2]上有两根为x1,x2,则x1+x2=0.
以上命题正确的是
 
.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①两组对应边相等的三角形是全等三角形;
②“若xy=0,则|x|+|y|=0”的逆命题;
③“若a>b,则2x•a>2x•b”的否命题;
④“矩形的对角线互相垂直”的逆否命题.
其中真命题共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ax-1
x+1
,其中a∈R
(1)解不等式f(x)≤-1; 
(2)求a的取值范围,使f(x)在区间(0,+∞)上是单调减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从昆明市交通指挥中心随机选取了二环以内的50个交通路段,依据其交通指数数据绘制的直方图如右.

(1)据此估计,早高峰二环以内的三个路段至少有一个是严重拥堵的概率是多少?
(2)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=8,|
b
|=6,且|
a
+
b
|=|
a
-
b
|,求|
a
-
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-mx+m2-7=0},B={x|x2-3x+2=0},C={x|x2+4x-5=0},若A∩B≠∅且A∩C=∅,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下所给的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②垂直于同一直线的两条直线相互平行;
③向量
a
=(1,2)按
b
=(1,1)平移得
c
=(2,3);
④双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点.
⑤曲线x3-y3+9x2y+9xy2=0关于原点对称.
其中真命题的序号为
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,如果存在正实数k,对于任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”,已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2014型增函数”,则实数a的取值范围是(  )
A、a<-1007
B、a<1007
C、a<
1007
3
D、a<-
1007
3

查看答案和解析>>

同步练习册答案