精英家教网 > 高中数学 > 题目详情
已知数列{an}是等差数列,若a9+3a11<0,a10•a11<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于(  )
A、20B、17C、19D、21
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列的性质和求和公式可得a10>0,a11<0,又可得S19=19a10>0,而S20=10(a10+a11)<0,进而可得Sn取得最小正值时n等于19
解答: 解:∵a9+3a11<0,∴由等差数列的性质可得
a9+3a11=a9+a11+2a11=a9+a11+a10+a12=2(a11+a10)<0,
又a10•a11<0,∴a10和a11异号,
又∵数列{an}的前n项和Sn有最大值,
∴数列{an}是递减的等差数列,
∴a10>0,a11<0,
∴S19=
19(a1+a19)
2
=
19×2a10
2
=19a10>0
∴S20=
20(a1+a20)
2
=10(a1+a20)=10(a10+a11)<0
∴Sn取得最小正值时n等于19
故选:C
点评:本题考查等差数列的性质和求和公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2011年我国国内生产总值为471564亿元,如果我国的GDP年均增长7.8%左右,按照这个增长速度,在2011年的基础上,经过多少年后,我国GDP才能实现比2011年翻两番的目标?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在直线x+3y-1=0上,点Q在直线x+3y+3=0上,PQ中点为M(x0,y0),且y0≥x0+2,则
y0
x0
的取值范围为(  )
A、(-
1
3
,-
1
7
)
B、(-∞,-
1
3
]∪[-
1
7
,+∞)
C、(-
1
3
1
7
]
D、(-
1
3
,-
1
7
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C的对边分别为a、b、c,若
m
=(
3
sinA-cosA,1),
n
=(cosC,cosB),且
m
n

(1)求∠B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
4
+ax+
a
2
  
(1)若函数f(x)在(-∞,-4)上的减函数,求a的值;
(2)当|x|≤2时,记函数f(x)的最小值为g(a),求出g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(1,2)作圆x2+y2+2x-4y-164=0的弦,其中弦长为整数的共有
 
条.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(  )
A、f(x)=
1
x2
B、f(x)=x2+1
C、f(x)=x3
D、f(x)=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x+1>0},B={-2,-1,0},则(∁RA)∩B=(  )
A、{-2,-1}
B、{-2}
C、{-1,0,1}
D、{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:实数x满足x2-4ax+3a2<0(其中a>0),命题q:实数x满足
|x-1|≤2
x+3
x-2
>0

(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案