精英家教网 > 高中数学 > 题目详情
已知函数f﹙x﹚=loga(1+x),g﹙x﹚=loga﹙x-1﹚﹙a>0且a≠1﹚.
①求函数f﹙x﹚+g﹙x﹚的定义域;
②判断函数f﹙x﹚+g﹙x﹚的奇偶性并说明理由;
③求使f﹙x﹚-g(2x)>0成立的x的集合.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:①要使函数f﹙x﹚+g﹙x﹚有意义,需
x+1>0
x-1>0
,由此求得函数f﹙x﹚+g﹙x﹚的定义域.
②根据函数F(x)的定义域不关于原点对称,可得函数F(x)是非奇非偶函数.
③要解的不等式即loga(1+x)>loga(2x-1),分当a>1时 和当 0<a<1时两种情况,分别利用对数函数的定义域及单调性求得不等式的解集.
解答: 解:①∵函数f﹙x﹚=loga(1+x),g﹙x﹚=loga﹙x-1﹚,
要使函数f﹙x﹚+g﹙x﹚有意义,需
x+1>0
x-1>0
,解得x>1,
故函数f﹙x﹚+g﹙x﹚的定义域为(1,+∞).
②令F(x)=f﹙x﹚+g﹙x﹚,则由①可得函数F(x)的定义域为(1,+∞),
不关于原点对称,故函数F(x)是非奇非偶函数.
③由f﹙x﹚-g(2x)>0可得 loga(1+x)>loga(2x-1),
当a>1时,不等式化为1+x>2x-1>0,解得
1
2
<x<2,故不等式的解集为(
1
2
,2);
当 0<a<1时,不等式化为2x-1>x+1>0,解得 x>2,故不等式的解集为(2,+∞).
点评:本题主要考查对数函数的图象和性质综合应用,对数不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过原点的直线交双曲线x2-y2=4
2
于P,Q两点,现将坐标平面沿直线y=-x折成直二面角,则折后线段PQ的长度的最小值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列4个命题:
(1)若a<b,则am2<bm2;(2)函数f(x)=
1
log
1
2
(2x+1)
的定义域为(-∞,0)(3)“a≤2”是“对任意的实数x,|x+1|+|x-1|≥a成立”的充要条件;(4)函数f(x)=
2x-1
2x+1
的值域为(-1,1).其中正确的命题个数是(  )
A、1B、2C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品的广告费支出x与销售额y(单位:百万元)之间有如下的对应数据:
x 2 4 5 6 8
y 30 40 50 60 70
(1)请画出表中数据的散点图;
(2)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程y=
b
x+
a

(3)要使这种产品的销售额突破一亿元(含一亿元),则广告费支出至少为多少百万元?(精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是平行四边形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,设E为PC中点,点F在线段PD上且PF=2FD.
(Ⅰ)求证:BE∥平面ACF;
(Ⅱ)设二面角A-CF-D的大小为θ,若|cosθ|=
42
14
,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥A-BCD中,E,F,G分别是AB,AC,BD的中点,若AD与BC所成的角是60°,那么角FEG为多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

某办公室共有6人,组织出门旅行,旅行车上的6个座位如图所示,其中甲、乙两人的关系较为亲密,要求在同一排且相邻,则不同的安排方法有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=
1-|x|
|x+2|-2
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为
 

查看答案和解析>>

同步练习册答案