精英家教网 > 高中数学 > 题目详情
在三棱锥A-BCD中,E,F,G分别是AB,AC,BD的中点,若AD与BC所成的角是60°,那么角FEG为多少度?
考点:棱锥的结构特征
专题:空间角
分析:根据异面直线所成角的定义可得∠FEG为异面直线AD与BC所成的角,这样可得∠FEG=60°.
解答: 解:如图连接EF、EG,∵E,F,G分别是AB,AC,BD的中点,
∴EF∥BC,EG∥AD,
又AD与BC所成的角是60°,
∴∠FEG=60°.
点评:本题考查了异面直线所成角的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知△ABC内接于圆O,点D在OC的延长线上,AD是⊙O的切线,若∠B=30°,AC=3,则OD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),若直线AC与BD的斜率之积为-
1
4
,则椭圆的离心率为(  )
A、
1
2
B、
2
2
C、
3
2
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}前n项和为Sn,且满足S3=
7
2
,S6=
63
2

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求log2a1+log2a2+log2a3+…+log2a25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f﹙x﹚=loga(1+x),g﹙x﹚=loga﹙x-1﹚﹙a>0且a≠1﹚.
①求函数f﹙x﹚+g﹙x﹚的定义域;
②判断函数f﹙x﹚+g﹙x﹚的奇偶性并说明理由;
③求使f﹙x﹚-g(2x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在招收体育特长生时,须对报名学生进行三个项目的测试,规定三项都合格者才能录取.假设每项测试相互独立,学生甲和乙三个项目测试合格的概率均相等•且各项测试合格的概率分别为
1
2
1
2
1
3

(1)求学生甲和乙至少有一人被录取的概率;
(2)求学生甲测试合格的项数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n•2n+3
(Ⅰ)若{bn}的首项为4,公比为2,求数列{an+bn}的前n项和Sn
(Ⅱ)若an=4n+4,试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它r(r∈N,r≥2)项的和?若存在,请求出该项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+x-2,
(Ⅰ)求曲线y=f(x)在点(1,0)处的切线的方程;
(Ⅱ)如果曲线y=f(x)的一条切线与直线y=4x-1平行,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是R上的偶函数,并且在区间(0,+∞)上是增函数,若f(1)=0,则满足xf(x)>0的x的集合是
 

查看答案和解析>>

同步练习册答案