| A. | $\sqrt{37}$+4 | B. | $\sqrt{37}$-4 | C. | $\sqrt{37}$-2$\sqrt{5}$ | D. | $\sqrt{37}$+2$\sqrt{5}$ |
分析 设双曲线的左焦点为F',求出双曲线的a,b,c,运用双曲线的定义可得|AP|+|AF|=|AP|+|AF'|-2$\sqrt{5}$,考虑A在左支上运动到与P,F'共线时,取得最小值,即可得到所求值.
解答
解:由题意可得A在双曲线的左支上,
双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的a=$\sqrt{5}$,b=2,c=3,
设双曲线的左焦点为F',
即有F(3,0),F'(-3,0),
由双曲线的定义可得|AF'|-|AF|=2a=2$\sqrt{5}$,
即有|AP|+|AF|=|AP|+|AF'|-2$\sqrt{5}$,
当A在左支上运动到P,A,F'共线时,
|AP|+|AF'|取得最小值|PF'|=$\sqrt{(3+3)^{2}+{1}^{2}}$=$\sqrt{37}$,
则有|AP|+|AF|的最小值为$\sqrt{37}$-2$\sqrt{5}$.
故选:C.
点评 本题考查双曲线上一点到一定点和焦点的距离和的最小值,注意运用双曲线的定义和三点共线时取得最小值,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-1,\frac{1}{2}})∪[{2,+∞})$ | B. | $[{-1,\frac{1}{2}}]∪({2,+∞})$ | C. | [2,+∞) | D. | $[{-1,\frac{1}{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com