精英家教网 > 高中数学 > 题目详情
6.已知F是双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的右焦点,点P的坐标为(3,1),点A在双曲线上,则|AP|+|AF|的最小值为(  )
A.$\sqrt{37}$+4B.$\sqrt{37}$-4C.$\sqrt{37}$-2$\sqrt{5}$D.$\sqrt{37}$+2$\sqrt{5}$

分析 设双曲线的左焦点为F',求出双曲线的a,b,c,运用双曲线的定义可得|AP|+|AF|=|AP|+|AF'|-2$\sqrt{5}$,考虑A在左支上运动到与P,F'共线时,取得最小值,即可得到所求值.

解答 解:由题意可得A在双曲线的左支上,
双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的a=$\sqrt{5}$,b=2,c=3,
设双曲线的左焦点为F',
即有F(3,0),F'(-3,0),
由双曲线的定义可得|AF'|-|AF|=2a=2$\sqrt{5}$,
即有|AP|+|AF|=|AP|+|AF'|-2$\sqrt{5}$,
当A在左支上运动到P,A,F'共线时,
|AP|+|AF'|取得最小值|PF'|=$\sqrt{(3+3)^{2}+{1}^{2}}$=$\sqrt{37}$,
则有|AP|+|AF|的最小值为$\sqrt{37}$-2$\sqrt{5}$.
故选:C.

点评 本题考查双曲线上一点到一定点和焦点的距离和的最小值,注意运用双曲线的定义和三点共线时取得最小值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数f(x)=3x+$\frac{2}{x}$,x∈[1,2]的值域为[2$\sqrt{6}$,7].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow{AB}$=(2,6),$\overrightarrow{BC}$=(-1,m),$\overrightarrow{CD}$=(3,m),若A,C,D三点共线,则m=-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)为定义在R上的奇函数,且在(0,+∞)上为增函数,f(3)=0,则不等式f(2x-1)≥0的解为(  )
A.$[{-1,\frac{1}{2}})∪[{2,+∞})$B.$[{-1,\frac{1}{2}}]∪({2,+∞})$C.[2,+∞)D.$[{-1,\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线的标准方程为$\frac{x^2}{4}-\frac{y^2}{16}=1$,则该双曲线的焦点坐标为,(±$2\sqrt{5}$,0)渐近线方程为y=±2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的倾斜角为$\frac{2π}{3}$,离心率为e,$\frac{{a}^{2}+{e}^{2}}{b}$最小值为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点F作一条渐近线的垂线,垂足为P,线段OP的垂直平分线交y轴于点Q(其中O为坐标原点).若△OFP的面积是△OPQ的面积的4倍,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的偶函数f(x)在(-∞,0)上单调递增,设a=f(3),$b=f(-\sqrt{2})$,c=f(2),则a,b,c大小关系是(  )
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)证明:AC∥平面BEF;
(2)求三棱锥D-BEF的体积.

查看答案和解析>>

同步练习册答案