精英家教网 > 高中数学 > 题目详情
某种汽车购买时费用为22.5万元,每年应交付保险费、养路费及汽油费共0.8万元,汽车的维修费为:第一年0.1万元,第二年0.3万元,第三年0.5万元,…,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
考点:函数模型的选择与应用,函数解析式的求解及常用方法
专题:计算题,等差数列与等比数列
分析:(I)依等差数列逐年递增,根据等差数列前n项和公式,即可得到f(n)的表达式;
(II)由(I)中使用n年该车的总费用,我们可以得到n年平均费用表达式,根据基本不等式,我们易计算出平均费用最小时的n值,进而得到结论.
解答: 解:(Ⅰ)依题意f(n)=22.5+[0.1+0.3+0.5+…+(0.2n-0.1)]+0.8n    
=0.1n2+0.8n+22.5;
(Ⅱ)设该车的年平均费用为S万元,则有S=
1
n
f(n)=0.1n+
22.5
n
+0.8≥2
2.25
+1=4
当且仅当0.1n=
22.5
n
,即n=15时,等号成立.
故:汽车使用15年报废为宜.
点评:本题考查的知识点是根据实际问题选择函数类型,基本不等式在最值问题中的应用,数列的应用,其中(I)的关键是由等差数列前n项和公式,得到f(n)的表达式,(II)的关键是根据基本不等式,得到函数的最小值点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx•sin(x+
π
3
)-
3
sin2x+sinx•cosx.
(1)求函数f(x)的单调递减区间;
(2)将函数f(x)的图象按向量
a
=(m,0)平移后得到g(x)的图象,求使函数g(x)为偶函数的m的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2-(2a+1)x+2.
(Ⅰ)若f(x)>-x-1恒成立,求a的取值范围;
(Ⅱ)当a>0时,解不等式:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+2y-1≥0
2x+y-2≤0
,求Z=2x+2y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2cos2x-1,(x∈R).
(1)求函数f(x)的最小正周期.
(2)求函数f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b边是方程x2-2
3
x+2=0的两个根,且2cos(A+B)=1.
(1)求角C的度数;
(2)求c边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知扇形AOB是半径为2,圆心角为
π
6
的装饰材料,点P是弧AB上的动点,△PQR为扇形的内接三角形,且PQ∥OA,某设计师计划在该扇形装饰材料上彩绘,并以△PQR为主题着色板,记∠POA=θ.
(Ⅰ)将主题着色板的面积S表示为θ的函数;
(Ⅱ)当角θ取何值时,主题着色板的面积S最大?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为:
x=t
y=1+2t
(t为参数),圆C的极坐标方程为ρ=2cosθ,则圆C的圆心到l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=
1
2
,b=
1
3
,则
3a2-ab
3a2+5ab-2b2
=
 

查看答案和解析>>

同步练习册答案