精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的组合体中,三棱柱的侧面是圆柱的轴截面,是圆柱底面圆周上不与重合的一个点.

1)若圆柱的轴截面是正方形,当点是弧的中点时,求异面直线的所成角的大小;

2)当点是弧的中点时,求四棱锥与圆柱的体积比.

【答案】1;(2.

【解析】

1)取的中点,连接,则(或其补角)为异面直线的所成角,利用余弦定理可求异面直线的所成角的大小.

2)设圆柱的底面半径为,母线长度为,当点是弧的中点时,可证明平面,从而可得四棱锥的体积,最后求出圆柱的体积即得四棱锥与圆柱的体积比.

1)如图,取的中点,连接

(或其补角)为异面直线的所成角.

设正方形的边长为

中,

.

因为.

2)设圆柱的底面半径为,母线长度为

当点是弧的中点时,

因为三棱柱的侧面是圆柱的轴截面,平面.

所以三棱柱为直三棱柱,所以平面.

因为平面,所以

因为,所以平面.

由三棱柱可得,故平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面为等边三角形,分别为棱的中点.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值;

3)在棱上是否存在点,使得平面?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为六个小组(所调查的居民平均每天运动时长均在内),得到的频率分布直方图如图所示.

1)求出图中的值,并估计这名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);

2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在时间段内应抽出多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“类函数”.

(1)已知函数,试判断是否为“类函数”?并说明理由;

(2)设是定义在上的“类函数”,求是实数的最小值;

(3)若 为其定义域上的“类函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面,已知,点是棱的中点.

1)求证:平面

2)求二面角的余弦值;

3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方形中,边长的中点为,现将沿对角线翻折(如图),则在翻折的过程中.下列说法正确的是______.(填正确命题的序号)

①直线与直线所成的角为不重合时);

②三棱锥体积的最大值为

③三棱锥外接球的表面积为

④点运动形成的轨迹为椭圆的一部分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按照干支顺序相配,构成了“干支纪年法”,其相配顺序为:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60为一个周期,周而复始,循环记录.按照“干支纪年法”,中华人民共和国成立的那年为己丑年,则2013年为(

A.甲巳年B.壬辰年C.癸巳年D.辛卯年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在原点出切线相同.

(1)求的单调区间和极值;

(2)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知RtABC如图(1),∠C90°D.E分别是ACAB的中点,将△ADE沿DE折起到PDE位置(即A点到P点位置)如图(2)使∠PDC60°

1)求证:BCPC

(2)若BC2CD4,求点D到平面PBE的距离.

查看答案和解析>>

同步练习册答案