【题目】在如图所示的组合体中,三棱柱
的侧面
是圆柱的轴截面,
是圆柱底面圆周上不与
重合的一个点.
![]()
(1)若圆柱的轴截面是正方形,当点
是弧
的中点时,求异面直线
与
的所成角的大小;
(2)当点
是弧
的中点时,求四棱锥
与圆柱的体积比.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,![]()
平面
,△
为等边三角形,
,
,
,
分别为棱
,
的中点.
![]()
(1)求证:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值;
(3)在棱
上是否存在点
,使得
平面
?若存在,求
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为
六个小组(所调查的居民平均每天运动时长均在
内),得到的频率分布直方图如图所示.
![]()
(1)求出图中
的值,并估计这
名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);
(2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在
时间段内应抽出多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若在定义域内存在实数
,满足
,则称
为“
类函数”.
(1)已知函数
,试判断
是否为“
类函数”?并说明理由;
(2)设
是定义在
上的“
类函数”,求是实数
的最小值;
(3)若
为其定义域上的“
类函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,
侧面
,已知
,
,
,点
是棱
的中点.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)在棱
上是否存在一点
,使得
与平面
所成角的正弦值为
,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方形
中,边长
,
的中点为
,现将
沿对角线
翻折(如图),则在翻折的过程中.下列说法正确的是______.(填正确命题的序号)
![]()
①直线
与直线
所成的角为
(
,
不重合时);
②三棱锥
体积的最大值为
;
③三棱锥
外接球的表面积为
;
④点
运动形成的轨迹为椭圆的一部分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按照干支顺序相配,构成了“干支纪年法”,其相配顺序为:甲子、乙丑、丙寅
癸酉、甲戌、乙亥、丙子
癸未、甲申、乙酉、丙戌
癸巳
癸亥,60为一个周期,周而复始,循环记录.按照“干支纪年法”,中华人民共和国成立的那年为己丑年,则2013年为( )
A.甲巳年B.壬辰年C.癸巳年D.辛卯年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Rt△ABC如图(1),∠C=90°,D.E分别是AC,AB的中点,将△ADE沿DE折起到PDE位置(即A点到P点位置)如图(2)使∠PDC=60°.
![]()
(1)求证:BC⊥PC;
(2)若BC=2CD=4,求点D到平面PBE的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com