精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线,直线交抛物线于两点,是抛物线外一点,连接分别交抛物线于点,且

(Ⅰ)若,求点的轨迹方程;

(Ⅱ)若,求面积的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)联立直线与抛物线,利用韦达定理、定比分点坐标公式、导数的几何意义可求得点的横坐标为定值,再根据点在抛物线外可得点的纵坐标的范围,从而可得结果;

(Ⅱ)由(Ⅰ)和弦长公式求解.

(Ⅰ)设

,得

,(*

因为,所以可设

所以由定比分点公式得

的坐标代入抛物线方程,得

化简得

所以为方程的两根,

联立(*)式得

解得

设过抛物线上点的切线与平行,

因为,所以,则,即

所以点的轨迹方程为

(Ⅱ)设的中点为

由(Ⅰ)知

因为,所以

,得

所以

显然当时,取得最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为准备参加市运动会,对本校甲、乙两个田径队中名跳高运动员进行了测试,并用茎叶图表示出本次测试人的跳高成绩(单位:.跳高成绩在以上(包括)定义为“合格”,成绩在以下(不包括)定义为“不合格”.鉴于乙队组队晚,跳高成绩相对较弱,为激励乙队队队,学校决定只有乙队中“合格”者才能参加市运动会开幕式旗林队.

1)求甲队队员跳高成绩的中位数;

2)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取人,则人中“合格”与“不合格”的人数各为多少;

3)若从所有“合格”运动员中选取名,用表示所选运动员中能参加市运动会开幕式旗林队的人数,试求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足

1)求a1a2a3的值;

2)对任意正整数nan小数点后第一位数字是多少?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=(sinx+cosx2cos2x).

1)求函数fx)的最小正周期;

2)已知△ABC的内角ABC的对边分别为abc,若,且a2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知多面体的底面是边长为2的菱形,底面.

1)证明:平面

2)若,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】蜂巢是由工蜂分泌蜂蜡建成的.从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成.如图,在正六棱柱的三个顶点处分别用平面,平面,平面截掉三个相等的三棱锥,平面,平面,平面交于点,就形成了蜂巢的结构,如下图(4)所示,

瑞士数学家克尼格利用微积分的方法证明了蜂巢的这种结构是在相同容积下所用材料最省的,英国数学家麦克劳林通过计算得到菱形的一个内角为,即.以下三个结论①;② ;③四点共面,正确命题的个数为______个;若,则此蜂巢的表面积为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数).设直线的交点为,当变化时的点的轨迹为曲线.

1)求出曲线的普通方程;

2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设射线的极坐标方程为,点是射线与曲线的交点,求点的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“国”、“富”、“民”、“强”四个字,有放回地从中任取一张卡片,将三次抽取后“国”“富”两个字都取到记为事件A,用随机模拟的方法估计事件A发生的概率,利用电脑随机产生整数0123四个随机数,分别代表“国”、“富”、“民”、“强”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

231

232

210

023

122

021

321

220

031

231

103

133

132

001

320

123

130

233

由此可以估计事件A发生的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的多面体中,EF⊥平面AEBAEEBADEFEFBCBC2AD4EF3AEBE2GBC的中点.

(Ⅰ)求证:AB∥平面DEG

(Ⅱ)求证:BDEG

(Ⅲ)求多面体ADBEG的体积.

查看答案和解析>>

同步练习册答案