【题目】袋子中有四张卡片,分别写有“国”、“富”、“民”、“强”四个字,有放回地从中任取一张卡片,将三次抽取后“国”“富”两个字都取到记为事件A,用随机模拟的方法估计事件A发生的概率,利用电脑随机产生整数0,1,2,3四个随机数,分别代表“国”、“富”、“民”、“强”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
231 | 232 | 210 | 023 | 122 | 021 | 321 | 220 | 031 |
231 | 103 | 133 | 132 | 001 | 320 | 123 | 130 | 233 |
由此可以估计事件A发生的概率为_____.
【答案】![]()
【解析】
经随机模拟产生了以下18组随机数,利用列举法求出其中事件A发生的随机数有6个,由此能估计事件A发生的概率.
由题意,袋子中有四张卡片,分别写有“国”、“富”、“民”、“强”四个字,
有放回地从中任取一张卡片,将三次抽取后“国”“富”两个字都取到记为事件A,
用随机模拟的方法估计事件A发生的概率,
利用电脑随机产生整数0,1,2,3四个随机数,
分别代表“国”、“富”、“民”、“强”这四个字,
以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数,
其中事件A发生的随机数有:210,021,031,103,001,130,共6个,
所以估计事件A发生的概率为P
.
故答案为:
.
科目:高中数学 来源: 题型:
【题目】某公园计划在矩形空地上建造一个扇形花园如图①所示,矩形
的
边与
边的长分别为48米与40米,扇形的圆心
为
中点,扇形的圆弧端点
,
分别在
与
上,圆弧的中点
在
上.
![]()
(1)求扇形花园的面积(精确到1平方米);
(2)若在扇形花园内开辟出一个矩形区域
为花卉展览区.如图②所示,矩形
的四条边与矩形
的对应边平行,点
,
分别在
,
上,点
,
在扇形的弧上.某同学猜想:当矩形
面积最大时,两矩形
与
的形状恰好相同(即长与宽之比相同),试求花卉展览区
面积的最大值,并判断上述猜想是否正确(请说明理由).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)为奇函数,且当x≥0时,f(x)=ex﹣cosx,则不等式f(2x﹣1)+f(x﹣2)>0的解集为( )
A.(﹣∞,1)B.(﹣∞,
)C.(
,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒属于
属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的
,
,人体肺部结构中包含
,
的结构,新型冠状病毒肺炎是由它们复合而成的,表现为
.则下列结论正确的是( )
A.若
,则
为周期函数
B.对于
,
的最小值为![]()
C.若
在区间
上是增函数,则![]()
D.若
,
,满足
,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥底面ABCD,E在PB上.
![]()
(1)证明:AC⊥PD;
(2)若PE=2BE,求三棱锥P﹣ACE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验669人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.
方案一:将每个人的血分别化验,这时需要验669次.
方案二:按
个人一组进行随机分组,把从每组
个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这
个人的血就只需检验一次(这时认为每个人的血化验
次);否则,若呈阳性,则需对这
个人的血样再分别进行一次化验,这时该组
个人的血总共需要化验
次.
假设此次普查中每个人的血样化验呈阳性的概率为
,且这些人之间的试验反应相互独立.
(1)设方案二中,某组
个人中每个人的血化验次数为
,求
的分布列.
(2)设
,试比较方案二中,
分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案一,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
,若存在
,使得
对任意
都成立,则称数列
为“
折叠数列”.
(1)若
,
,判断数列
,
是否是“
折叠数列”,如果是,指出m的值;如果不是,请说明理由;
(2)若
,求所有的实数q,使得数列
是3-折叠数列;
(3)给定常数
,是否存在数列
使得对所有
,
都是
折叠数列,且
的各项中恰有
个不同的值,证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com