精英家教网 > 高中数学 > 题目详情
19.2012年中华人民共和国环境保护部批准《环境空气质量标准》为国家环境质量标准,该标准增设和调整了颗粒物、二氧化氮、铅、笨等的浓度限值,并从2016年1月1日起在全国实施.空气质量的好坏由空气质量指数确定,空气质量指数越高,代表空气污染越严重,某市对市辖的某两个区加大了对空气质量的治理力度,从2015年11月1日起监测了100天的空气质量指数,并按照空气质量指数划分为:指标小于或等于115为通过,并引进项目投资.大于115为未通过,并进行治理.现统计如下.
空气质量指数(0,35][35,75](75,115](115,150](150,250]>250
空气质量类别 良轻度污染中度污染重度污染严重污染
甲区天数13 204220 32
乙区天数 8324016 2 2
(Ⅰ)以频率值作为概率值,求甲区和乙区通过监测的概率;
(Ⅱ)对于甲区,若通过,引进项目可增加税收40(百万元),若没通过监测,则治理花费5(百万元);对于乙,若通过,引进项目可增加税收50(百万元),若没通过监测,则治理花费10(百万元)..在(Ⅰ)的前提下,记X为通过监测,引进项目增加的税收总额,求随机变量X的分布列和数学期望.

分析 (Ⅰ)以频率值作为概率值,利用等可能事件概率计算公式能求出甲区和乙区通过监测的概率$\frac{4}{5}$.
(Ⅱ)随机变量X的所有可能取值为90,45,30,-15,分别求出相应的概率,由此能求出随机变量X的分布列和EX.

解答 解:(Ⅰ)由题意得甲区通过监测的概率约为:$\frac{42+20+13}{100}=\frac{3}{4}$,
乙区通过监测的概率约为:$\frac{40+32+8}{100}$=$\frac{4}{5}$.
(Ⅱ)随机变量X的所有可能取值为90,45,30,-15,
P(X=90)=$\frac{4}{5}×\frac{3}{4}=\frac{3}{5}$,
P(X=45)=$\frac{4}{5}×\frac{1}{4}$=$\frac{1}{5}$,
P(X=30)=$\frac{1}{5}×\frac{3}{4}$=$\frac{3}{20}$,
P(X=-15)=$\frac{1}{5}×\frac{1}{4}$=$\frac{1}{20}$,
∴随机变量X的分布列为:

 X 90 45 30-15
 P $\frac{3}{50}$ $\frac{1}{50}$ $\frac{3}{20}$ $\frac{1}{20}$
EX=$90×\frac{3}{5}+45×\frac{1}{5}+30×\frac{3}{20}-15×\frac{1}{20}=66\frac{3}{4}$(百万元).

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知在实数集上,f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=x-1,求f(x),g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.掷一枚均匀的硬币4次,则出现“3次正面朝上,1次反面朝上”的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合U={1,2,3,4},B={1,2,3},且A∩B={1,2},则满足条件的A的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,为了测量河对岸电视塔CD的高度,小王在点A处测得塔顶D仰角为30°,塔底C与A的连线同河岸成15°角,小王向前走了1200m到达M处,测得塔底C与M的连线同河岸成60°角,则电视塔CD的高度为600$\sqrt{2}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.a,b,c,d四名运动员争夺某次赛事的第1,2,3,4名,比赛规则为:通过抽签,将4人分为甲、乙两个小组,每组两人.第一轮比赛(半决赛):两组各自在组内进行一场比赛,决出各组的胜者和负者;第二轮比赛决赛:两组中的胜者进行一场比赛争夺1,2名,两组中的负者进行一场比赛争夺第3,4名.四名选手以往交手的胜负情况累计如下表:
  a b c d
 a  a13胜26负 a20胜10负 a21胜21负
 b b26胜13负  b14胜28负 b19胜19负
 c c10胜20负 c28胜14负  c18胜18负
 d d21胜21负 d19胜19负 d18胜18负 
若抽签结果为甲组:a,c;乙组:b,d.每场比赛中,双方以往交手各自获胜的频率作为获胜的概率.
(Ⅰ)求c获得第1名的概率;
(Ⅱ)求c的名次X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,已知P点到两定点D(-2,0),E(2,0)连线斜率之积为$-\frac{1}{2}$.
(1)求证:动点P恒在一个定椭圆C上运动;
(2)过$F(\sqrt{2},0)$的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某地区交通执法部门从某日上午9时开始对经过当地的200名车辆驾驶人员驾驶的车辆进行超速测试并分组,并根据测速的数据只做了频率分布图:
组号超速分组频数频率频率
组距
1[0,20%]1760.88z
2[20%,40%]120.060.0030
3[40%,60%]6y0.0015
4[60%,80%]40.020.0010
5[80%,100%]x0.010.0005
(1)求z,y,x的值;
(2)若在第3,4,5组用分层抽样的方法随机抽取6名驾驶人员做回访调查,并在这6名驾驶员中任选2人进行采访,求这2人中恰有1人超速在[80%,100%]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=x${\;}^{\frac{1}{2}}$,则f(-$\frac{5}{2}$)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案