精英家教网 > 高中数学 > 题目详情
9.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=x${\;}^{\frac{1}{2}}$,则f(-$\frac{5}{2}$)=-$\frac{\sqrt{2}}{2}$.

分析 根据函数奇偶性和周期性的关系进行转化求解即可.

解答 解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=x${\;}^{\frac{1}{2}}$,
∴f(-$\frac{5}{2}$)=f(-$\frac{5}{2}$+2)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-$(\frac{1}{2})^{\frac{1}{2}}$=-$\sqrt{\frac{1}{2}}$=-$\frac{\sqrt{2}}{2}$,
故答案为:-$\frac{\sqrt{2}}{2}$

点评 本题主要考查函数值的计算,根据函数奇偶性和周期性的关系进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.2012年中华人民共和国环境保护部批准《环境空气质量标准》为国家环境质量标准,该标准增设和调整了颗粒物、二氧化氮、铅、笨等的浓度限值,并从2016年1月1日起在全国实施.空气质量的好坏由空气质量指数确定,空气质量指数越高,代表空气污染越严重,某市对市辖的某两个区加大了对空气质量的治理力度,从2015年11月1日起监测了100天的空气质量指数,并按照空气质量指数划分为:指标小于或等于115为通过,并引进项目投资.大于115为未通过,并进行治理.现统计如下.
空气质量指数(0,35][35,75](75,115](115,150](150,250]>250
空气质量类别 良轻度污染中度污染重度污染严重污染
甲区天数13 204220 32
乙区天数 8324016 2 2
(Ⅰ)以频率值作为概率值,求甲区和乙区通过监测的概率;
(Ⅱ)对于甲区,若通过,引进项目可增加税收40(百万元),若没通过监测,则治理花费5(百万元);对于乙,若通过,引进项目可增加税收50(百万元),若没通过监测,则治理花费10(百万元)..在(Ⅰ)的前提下,记X为通过监测,引进项目增加的税收总额,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线C2:y2=2px(p>0)的焦点F重合,且点F到直线x-y+1=0的距离为$\sqrt{2}$,C1与C2的公共弦长为2$\sqrt{6}$.
(1)求椭圆C1的方程及点F的坐标;
(2)过点F的直线l与C1交于A,B两点,与C2交于C,D两点,求$\frac{1}{|\overrightarrow{AB}|}$+$\frac{1}{|\overrightarrow{CD}|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别是a,b,c,且acosB+bcosA=-2ccosC.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,B、D是以AC为直径的圆上的两点,其中$AB=\sqrt{t+1}$,$AD=\sqrt{t+2}$,则$\overrightarrow{AC}$$•\overrightarrow{BD}$=(  )
A.1B.2C.tD.2t

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f(1))处的切线方程为x+y-2=0
(1)求y=f(x)的解析式;
(2)证明:$\frac{f(x)-1}{x-{e}^{x}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=2sin2(ωx+$\frac{π}{6}$)(ω>0)在区间[0,$\frac{π}{2}$]内单调递增,则ω的最大值是(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知O是坐标原点,点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一个动点,则x+y的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=logacos(2x-$\frac{π}{3}$)(其中a>0,且a≠1).
(1)求它的定义域;
(2)求它的单调区间;
(3)判断它的奇偶性;
(4)判断它的周期性,如果是周期函数,求出它的周期.

查看答案和解析>>

同步练习册答案