精英家教网 > 高中数学 > 题目详情
图示是一个几何体的直观图,画出它的三视图.
考点:简单空间图形的三视图
专题:作图题
分析:该几何体的主视图与侧视图为正方形和一个三角形;俯视图为一个圆加一点.
解答: 解:三视图如图所示:
点评:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;在画图时一定要将物体的边缘、棱、顶点都体现出来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另一点G,给出下列三个结论:①AD+AE=AB+BC+CA,②AF•AG=AD•AE,③△AFB∽△ADG,其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

运行如图所示的程序框图,则输出S的值为(  )
A、8B、4C、3D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,∠ABC=60°,AB=2,△PCB为正三角形,且平面PCB⊥平面ABCD,M,N分别为BC,PD的中点.
(1)求证:MN∥面APB;
(2)求二面角B-NC-P的余弦值;
(3)求四棱锥P-ABCD被截面MNC分成的上下两部分体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,若 E为PC的中点,且BE与平面PDC所成的角的正弦值为
2
5
5

(1)求CD的长
(2)求证BC⊥平面PBD
(3)设Q为侧棱PC上一点,
PQ
PC
,试确定λ的值,使得二面角Q-BD-P的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD与BDEf均为菱形,已知∠DAB=∠DBF=60°,且面ABCD⊥面BDEF,AC=2
3

(1)求证:OF⊥平面ABCD;
(2)求二面角F-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
a2-1
(ax-a-x)(a>0,且a≠1),当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等比数列,且a2=3,a4=27
(1)求数列{an}的通项公式;
(2)令bn=|an|,求{bn}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项和为Sn,且Sn=
1-bn
2
(n∈N).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)记cn=an•bn,比较cn+1与cn的大小;
(Ⅲ)记cn=an•bn求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案