精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a
a2-1
(ax-a-x)(a>0,且a≠1),当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.
考点:函数恒成立问题
专题:函数的性质及应用
分析:由函数单调性的定义得到函数在[-1,1]上为增函数,然后求得f(-1)的值得答案.
解答: 解:设-1≤x1<x2≤1,
则f(x1)-f(x2)=
a
a2-1
(ax1-a-x1-ax2+a-x2)

=
a
a2-1
(ax1-ax2+
1
ax2
-
1
ax1
)

=
a
a2-1
(ax1-ax2+
ax1-ax2
ax1ax2
)

=
a
a2-1
(ax1-ax2)(1+
1
ax1ax2
)

若a>1,
a
a2-1
>0,ax1ax21+
1
ax1ax2
>0

此时f(x1)-f(x2)<0,f(x1)<f(x2).
f(x)在[-1,1]上为增函数,
若0<a<1,
a
a2-1
<0,ax1ax21+
1
ax1ax2
>0

此时f(x1)-f(x2)<0,f(x1)<f(x2).
f(x)在[-1,1]上为增函数,
综上,对于a>0,且a≠1,当x∈[-1,1]时,f(x)为增函数.
∴当x∈[-1,1]时,要使f(x)≥b恒成立,
b≤f(-1)=
a
a2-1
(a-1-a)
=-1.
∴b的取值范围是(-∞,-1).
点评:本题考查恒成立问题,考查了函数的性质,训练了分类讨论的数学思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,如果存在正实数k,对于任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”,已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2014型增函数”,则实数a的取值范围是(  )
A、a<-1007
B、a<1007
C、a<
1007
3
D、a<-
1007
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x(x?R)
(Ⅰ)求证:当x≥0时,f(x)≥2x+
x3
3

(Ⅱ)试讨论函数H(x)=f(x)-ax(x∈R)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

图示是一个几何体的直观图,画出它的三视图.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在三棱柱ABC-A1B1C1中,各侧棱都垂直于底面且地面为等腰直角三角形,∠ACB=90°,AC=BC=4,AA1=4,E,F分别在AC,BC上,且CE=3,CF=2,求几何体EFC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当a、b∈R且a+b≠0时,总有[f(a)+f(b)](a+b)>0成立.
(1)若a>b,比较f(a)与f(b)的大小;
(2)若关于x的不等式f(m×2x)+f(2x-4x+m)<0对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,侧棱长均为
97
2
,底边AC=4,AB=2,BC=2
3
,D、E分别为PC、BC的中点.
(Ⅰ)求三棱锥P-ABC的体积;
(Ⅱ)求二面角C-DA-E的平面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2-x)ex,g(x)=(x2+ax-2a-3)ex,求证:当a≥-3时,一定存在x1、x2∈[0,5],使得f(x1)-g(x2)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的边长是2,B=60°,以AC为棱折成一个二面角B-AC-D,使B,D两点的距离是3,则二面角B-AC-D的大小是
 

查看答案和解析>>

同步练习册答案