精英家教网 > 高中数学 > 题目详情
如图在三棱柱ABC-A1B1C1中,各侧棱都垂直于底面且地面为等腰直角三角形,∠ACB=90°,AC=BC=4,AA1=4,E,F分别在AC,BC上,且CE=3,CF=2,求几何体EFC-A1B1C1的体积.
考点:组合几何体的面积、体积问题
专题:计算题,空间位置关系与距离
分析:所求几何体的体积,转化为两个棱锥的体积之和,求解即可,
解答: 解:所求几何体EFC-A1B1C1的体积,转化为两个棱锥A1-CEF和A1-BCC1B1的体积之和,∵三棱柱ABC-A1B1C1中,各侧棱都垂直于底面且地面为等腰直角三角形,∠ACB=90°,AC=BC=4,AA1=4,E,F分别在AC,BC上,且CE=3,CF=2,
VA1-CEF=
1
3
×
1
2
CE•CF•AA1
=
1
3
×
1
2
×3×2×4
=4.
VA1-BCC1B1=
1
3
BC•CC1•A1C1=
1
3
×4×4×4
=
64
3

∴几何体EFC-A1B1C1的体积:4+
64
3
=
76
3
点评:本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线(c-d)(x-b)-(a-b)(y-d)=0与曲线(x-a)(x-b)-(y-c)(y-d)=0的交点个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域
(1)y=
1-3x

(2)y=
x2-2x+3

(3)y=
1
x2+2x+3

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,若 E为PC的中点,且BE与平面PDC所成的角的正弦值为
2
5
5

(1)求CD的长
(2)求证BC⊥平面PBD
(3)设Q为侧棱PC上一点,
PQ
PC
,试确定λ的值,使得二面角Q-BD-P的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=x2-ax+1,求使y≥0对任意a∈[-3,3]恒成立的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
a2-1
(ax-a-x)(a>0,且a≠1),当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|x 12-x 22+b(x1-x2)|≤4对任意x1,x2∈[-1,1]恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求证:FC∥平面EAD;
(2)求二面角A-FC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,Sn=2an-n,则an=
 

查看答案和解析>>

同步练习册答案