精英家教网 > 高中数学 > 题目详情
已知y=x2-ax+1,求使y≥0对任意a∈[-3,3]恒成立的x取值范围.
考点:函数恒成立问题
专题:函数的性质及应用,不等式的解法及应用
分析:把给出的函数看作是关于a的一次函数,由y≥0对任意a∈[-3,3]恒成立得到关于a的不等式组,求解不等式组得答案.
解答: 解:y=x2-ax+1=-xa+x2+1,
令g(a)=-xa+x2+1,
要使y≥0对任意a∈[-3,3]恒成立,
g(-3)≥0
g(3)≥0
,即
3a+10≥0
-3a+10≥0

解得:-
10
3
≤a≤
10
3

∴使y≥0对任意a∈[-3,3]恒成立的x取值范围是[-
10
3
10
3
]
点评:本题考查恒成立问题,解答的关键是“更换主元”,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从0,1,2,3,4中任取四个数字组成无重复数字的四位数,其中偶数的个数是
 
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax3-3
2x2+1
(a>2),若在区间[1,2]上f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x|x-a|+b,x∈R.
(1)当a=1,b=1时.f(2x)=
5
4
,求x的值;
(2)若b<0,b为常数,任意x∈[0,1],不等式f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC,∠PAC=∠ABC=90°,PA=AC=2BC,平面PAC⊥平面ABC,D、E分别是PB、PC的中点.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)求二面角P-ED-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在三棱柱ABC-A1B1C1中,各侧棱都垂直于底面且地面为等腰直角三角形,∠ACB=90°,AC=BC=4,AA1=4,E,F分别在AC,BC上,且CE=3,CF=2,求几何体EFC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0)
(Ⅰ)求证:AC⊥BF;
(Ⅱ)若二面角F-BD-A的大小为60°,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E为PC中点.
(1)求证:DE⊥平面PCB;
(2)求点C到平面DEB的距离;
(3)求二面角E-BD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(1)证明:BN⊥平面C1NB1
(2)求二面角C-NB1-B的正切值的大小.

查看答案和解析>>

同步练习册答案