精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E为PC中点.
(1)求证:DE⊥平面PCB;
(2)求点C到平面DEB的距离;
(3)求二面角E-BD-P的余弦值.
考点:与二面角有关的立体几何综合题,直线与平面垂直的判定,点、线、面间的距离计算
专题:空间位置关系与距离
分析:(1)由已知条件推导出PD⊥BC,CD⊥BC,由此得到BC⊥平面PCD,从而能够证明DE⊥平面PCB.
(2)过点C作CM⊥BE于点M,平面DEB⊥平面PCB,从而得到线段CM的长度就是点C到平面DEB的距离,由此能求出结果.
(3)以点D为坐标原点,分别以直线DA,DC,DP为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角E-BD-P的余弦值.
解答: (1)证明:∵PD⊥平面ABCD,∴PD⊥BC,
又∵正方形ABCD中,CD⊥BC,PD∩CD=D,
∴BC⊥平面PCD,
又∵DE?平面PCD,∴BC⊥DE,
∵PD=CD,E是PC的中点,
DE⊥PC,PC∩BC=C,
∴DE⊥平面PCB.…(4分)
(2)解:过点C作CM⊥BE于点M,
由(1)知平面DEB⊥平面PCB,
又平面DEB∩平面PCB=BE,
∴CM⊥平面DEB,
∴线段CM的长度就是点C到平面DEB的距离,
∵PD=AB=2,PD=AB=CD=2,∠PDC=90°,
∴PC=2
2
,EC=
2
,BC=2,
∴BE=
6
,∴CM=
CE•BC
BE
=
2
3
3
.…(8分)
(3)以点D为坐标原点,分别以直线DA,DC,DP为x轴,y轴,z轴,
建立如图所示的空间直角坐标系,
由题意知:D(0,0,0),P(0,0,2),B(2,2,0),E(0,1,1),
DB
=(2,2,0),
DE
=(0,1,1)

设平面BDE的法向量为
n
=(x,y,z)

n
DB
=0
n
DE
=0

2x+2y=0
y+z=0
,令z=1,得到y=-1,x=1,∴
n
=(1,-1,1)

又∵C(0,2,0),A(2,0,0),
AC
=(-2,2,0)
,且AC⊥平面PDB,
∴平面PDB的一个法向量为
m
=(1,-1,0)

设二面角E-BD-P的平面角为α,
则cosα=|cos<
m
n
>|=|
1+1+0
2
3
|=
6
3

∴二面角E-BD-P的余弦值为
6
3
.…(12分)
点评:本题考查直线与平面垂直的证明,考查点到平面的距离的求法,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:(1)若向量
a
b
,则存在实数λ,使得
a
b

(2)非零向量
a
b
c
d
,若满足
d
=(
a
c
)
b
-(
a
b
)
c
,则
a
d

(3)与向量
a
=(1,2)
b
=(2,1)
夹角相等的单位向量
c
=(
2
2
2
2
)

(4)已知△ABC,若对任意t∈R,|
BA
-t
BC
|≥|
AC
|
,则△ABC一定为锐角三角形.
其中正确说法的序号是(  )
A、(1)(2)
B、(1)(3)
C、(2)(4)
D、(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=x2-ax+1,求使y≥0对任意a∈[-3,3]恒成立的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|x 12-x 22+b(x1-x2)|≤4对任意x1,x2∈[-1,1]恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)求二面角A-PD-C的余弦值;
(Ⅲ)在棱PB上是否存在点F,使EF∥平面PDC?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求证:FC∥平面EAD;
(2)求二面角A-FC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边是a,b,c,且a2=b2+c2-bc.
(1)求角A;
(2)若a=
3
,S为△ABC的面积,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=10n-n2(n∈N*),求:
(1)求数列{an}的通项公式;
(2)求{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若二项式(x+
1
2x
)6
的展开式的常数项为T,则
T
0
2xdx
=
 

查看答案和解析>>

同步练习册答案