精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边是a,b,c,且a2=b2+c2-bc.
(1)求角A;
(2)若a=
3
,S为△ABC的面积,求S的最大值.
考点:余弦定理,正弦定理
专题:三角函数的求值,解三角形
分析:(1)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,即可确定出A的度数;
(2)将a的值代入已知等式,并利用基本不等式求出bc的最大值,再由sinA的值,利用三角形面积公式即可求出S的最大值.
解答: 解:(1)∵a2=b2+c2-bc,即b2+c2-a2=bc,
∴cosA=
b2+c2-a2
2bc
=
1
2

∵A为三角形的内角,
∴A=
π
3

(2)∵a=
3

∴b2+c2-bc=3,即b2+c2=3+bc,
又b2+c2≥2bc,
∴3+bc≥2bc,即bc≤3,
∴S=
1
2
bcsinA=
3
4
bc≤
3
3
4

则S的最大值为
3
3
4
点评:此题考查了余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax3-3
2x2+1
(a>2),若在区间[1,2]上f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0)
(Ⅰ)求证:AC⊥BF;
(Ⅱ)若二面角F-BD-A的大小为60°,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E为PC中点.
(1)求证:DE⊥平面PCB;
(2)求点C到平面DEB的距离;
(3)求二面角E-BD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x

(1)求证:f(x)在x∈[1,+∞)上是增函数; 
(2)当x>0时,若f(x)≥f(m)恒成立,求正实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,直线PA⊥平面ABC,且∠ABC=90°,又点Q,M,N分别是线段PB,AB,BC的中点,且点K是线段MN上的动点.
(Ⅰ)证明:直线QK∥平面PAC;
(Ⅱ)若PA=AB=BC=8,且二面角Q-AK-M的平面角的余弦值为
3
9
,试求MK的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的正视图是一个底边长为4、腰长为3的等腰三角形,图1、图2分别是四棱锥P-ABCD的侧视图和俯视图.求四棱锥P-ABCD的侧面PAB和PBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(1)证明:BN⊥平面C1NB1
(2)求二面角C-NB1-B的正切值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e|x|,m>1,对任意的x∈(1,m),都有f(x-2)≤ex,则最大的正整数m为
 

查看答案和解析>>

同步练习册答案