精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧棱PA⊥底面ABCD,且PA=2,Q是PA的中点.
(Ⅰ)证明:PC∥平面BDQ;
(Ⅱ)求三棱锥Q-BAD的体积.
考点:直线与平面平行的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(I)连接AC交BD于O,再连接OE,根据中位线定理可得到PC∥OE,再由线面平行的判定定理可证明PC∥OE,得证.
(II)先根据PA⊥平面ABCD确定QA为棱锥Q-BAD的高,进而根据棱锥的体积公式可求出四棱锥Q-BAD的体积.
解答: 证明:(I)连接AC交BD于O,连接OE.
∵四边形ABCD是正方形,
∴O是AC的中点.
又∵E是PA的中点,
∴PC∥OE.
∵PC?平面BDE,OE?平面BDE
∴PC∥平面BDE.…(6分)
(II)∵侧棱PA⊥底面ABCD,且PA=2,Q是PA的中点.
∴棱锥Q-BAD的高QA=1,
又∵底面ABCD是边长为2的正方形,
∴棱锥Q-BAD的底面面积S△BAD=2,
VQ-BAD=
1
3
×S△BAD×QA=
1
3
×2×1=
2
3
.…(13分)
点评:本题主要考查棱锥的体积公式和线面平行的判定定理的应用.考查对定理的掌握情况和对基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直四棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AB=1,AA1=
6
2
,∠ABC=60°.证明:BD1⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sin(2ωx-
π
6
)+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
1
2
,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
π
4
,0),求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某货轮匀速行驶在相距300海里的甲、乙两地间,运输成本由燃料费用和其它费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其它费用为每小时m元,根据市场调研,得知m的波动区间是[1000,1600],且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图(1),在等腰梯形CDEF中,CB,DA是梯形的高,AE=BF=2,AB=2
2
,现将梯形沿CB,DA折起,使EF∥AB且EF=2AB,得一简单组合体ABCDEF如图(2)示,已知M,N分别为AF,BD的中点.
(Ⅰ)求证:MN∥平面BCF;
(Ⅱ)若直线DE与平面ABFE所成角的正切值为
2
2
,则求平面CDEF与平面ADE所成的锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是
1
3

(1)求小明在投篮过程中直到第三次才投中的概率;
(2)求小明在4次投篮后的总得分ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验.收集数据如下:
零件个数x(个) 1 2 3 4
加工时间y(小时) 2 3 5 8
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
y
=
b
x+
a

(Ⅲ)现需生产20件此零件,预测需用多长时间?
(注:用最小二乘法求线性回归方程系数公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

正项数列{an}满足a1=1,a2=2,又数列{
anan+1
}是以
2
2
为公比的等比数列,则使得不等式
1
a1
+
1
a2
+…+
1
a2n+1
<1280成立的最大整数n为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1
n(n+1)
的前n项和为
 

查看答案和解析>>

同步练习册答案