精英家教网 > 高中数学 > 题目详情
19.某校计划面向高一年级1200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.
(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;
(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
选择自然科学类选择社会科学类合计
男生6045105
女生304575
合计9090180
附:${K^2}=\frac{{n{{({ab-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
K00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

分析 (Ⅰ)计算抽取的男生与女生人数,根据分层抽样原理求出对应男生、女生人数;
(Ⅱ)根据统计数据,填写列联表,计算观测值,比较临界值得出结论.

解答 解:(Ⅰ)由条件知,抽取的男生为105人,女生为180-105=75人;
男生选择社会科学类的频率为$\frac{3}{7}$,女生选择社会科学类的频率为$\frac{3}{5}$;
由题意,男生总数为$1200×\frac{105}{180}=700$人,
女生总数为$1200×\frac{75}{180}=500$人,
所以,估计选择社会科学的人数为$700×\frac{3}{7}+500×\frac{3}{5}=600$人;
(Ⅱ)根据统计数据,可得列联表如下:

选择自然科学类选择社会科学类合计
男生6045105
女生304575
合计9090180
计算观测值${K^2}=\frac{{180×{{({60×45-30×45})}^2}}}{105×75×90×90}=\frac{36}{7}≈5.1429>5.024$,
所以,在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.

点评 本题考查了分层抽样原理与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1,S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足${b_n}=\frac{{{{(-1)}^n}}}{S_n}$,且{bn}的前n项和为Tn,求证:当n≥2时,$\frac{1}{3}≤|{T_n}|≤\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x>0,y>0,x+y2=4,则log2x+2log2y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上周期为4的奇函数,当0<x<2时,f(x)=log2x,则f(2)+f($\frac{7}{2}$)=(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若中心在原点,焦点在y轴上的双曲线离心率为$\sqrt{3}$,则此双曲线的渐近线方程为(  )
A.y=±xB.$y=±\frac{{\sqrt{2}}}{2}x$C.$y=±\sqrt{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{1}{e}•{e^x}+\frac{a}{2}{x^2}$-(a+1)x+a(a>0),其中e为自然对数的底数.若函数y=f(x)与y=f[f(x)]有相同的值域,则实数a的最大值为(  )
A.eB.2C.1D.$\frac{e}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知曲线f(x)=2x2+1在点M(x0,y0)处的瞬时变化率为-8,则点M的坐标为(-2,9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=a(x-1).
(Ⅰ)当a=1时,解不等式|f(x)|+|f(-x)|≥3x;
(Ⅱ)设|a|≤1,当|x|≤1时,求证:$|f({x^2})+x|≤\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,且满足an+2Sn•Sn-1=0(n≥2),a1=$\frac{1}{2}$.
(1)求证:{$\frac{1}{Sn}$}是等差数列;
(2)若${b_n}=\frac{2^n}{s_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案