精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=sin2(x+$\frac{π}{4}$).
(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)求f($\frac{π}{3}$-x)的单调递减区间.

分析 (Ⅰ)利用二倍角公式化简函数的表达式,然后求f(x)的最小正周期及其图象的对称轴方程;
(Ⅱ)化简$f(\frac{π}{3}-x)$为正弦函数类型,利用正弦函数的单调增区间求解函数的单调递减区间.

解答 (共13分)
解:(Ⅰ)因为 $f(x)=\frac{{1-cos2(x+\frac{π}{4})}}{2}$…(2分)
=$\frac{1+sin2x}{2}$.
所以 $T=\frac{2π}{2}=π$.…(4分)
令$2x=kπ+\frac{π}{2}(k∈Z)$,得:$x=\frac{kπ}{2}+\frac{π}{4}(k∈Z)$.…(6分)
所以 f(x)的最小正周期为π,对称轴的方程为$x=\frac{kπ}{2}+\frac{π}{4}(k∈Z)$.
(Ⅱ)$f(\frac{π}{3}-x)=\frac{{sin2(\frac{π}{3}-x)+1}}{2}$=$-\frac{1}{2}sin(2x-\frac{2π}{3})+\frac{1}{2}$.…(9分)
令$2kπ-\frac{π}{2}≤2x-\frac{2π}{3}≤2kπ+\frac{π}{2}(k∈Z)$,
得:$kπ+\frac{π}{12}≤x≤kπ+\frac{7π}{12}(k∈Z)$.
所以 $f(\frac{π}{3}-x)$的单调递减区间为$[kπ+\frac{π}{12},kπ+\frac{7π}{12}](k∈Z)$.…(13分)

点评 本题考查三角函数的化简求值,函数的周期以及函数的单调性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设坐标原点为O,已知过点(0,$\frac{1}{2}$)的直线交函数y=$\frac{1}{2}$x2的图象于A、B两点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的值为(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{x^2+6}{x}$,a>1,若不等式loga+1x-logax+5<f(n)对任意n∈N*恒成立,则实数x的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,过左焦点作倾斜角为45°的直线交椭圆于A,B两点.
(1)若$\overrightarrow{FA}=λ\overrightarrow{FB}$,求λ.
(2)设AB的中垂线与椭圆交于C,D两点,问A,B,C,D四点是否共圆,若共圆,则求出该圆的方程;若不共圆,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x∈R|x>1},B={x∈R|x2≤4},则A∪B=(  )
A.[-2,+∞)B.(1,+∞)C.(1,2]D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示的程序框图,a=2cos$\frac{π}{3},\;b=tan\frac{7π}{4}$,则输出的S值为(  )
A.2B.-2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设an=$\left\{\begin{array}{l}{{2}^{n-1},1≤n≤2,n∈N}\\{\frac{1}{{3}^{n}},n≥3,n∈N}\end{array}\right.$数列{an}的前n项和Sn,则$\underset{lim}{n→∞}$Sn=3$\frac{1}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=lg(x-3)+$\frac{{{{(x-2)}^0}}}{x+1}$的定义域是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1经过点(4,3),则双曲线C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{7}}{2}$D.$\frac{\sqrt{13}}{2}$

查看答案和解析>>

同步练习册答案