精英家教网 > 高中数学 > 题目详情
12.如图所示的程序框图,a=2cos$\frac{π}{3},\;b=tan\frac{7π}{4}$,则输出的S值为(  )
A.2B.-2C.-1D.1

分析 由已知的程序框图可知:本程序的功能是:计算并输出分段函数S=$\left\{\begin{array}{l}{a(a-b)}&{a≥b}\\{b(a+1)}&{a<b}\end{array}\right.$的值,由已知计算出a,b的值,代入可得答案.

解答 解:由已知的程序框图可知:
本程序的功能是:计算并输出分段函数S=$\left\{\begin{array}{l}{a(a-b)}&{a≥b}\\{b(a+1)}&{a<b}\end{array}\right.$的值,
∵a=2cos$\frac{π}{3}$=1,b=tan$\frac{7π}{4}$=-1,
∴S=1×[1-(-1)]=2,
故选:A.

点评 本题考查的知识点是程序框图,特殊角的三角函数,其中根据已知的程序框图,分析出程序的功能是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若定义在R上的函数f(x)满足f(-x)=f(x),f(2-x)=f(x),且当x∈[0,1]时,f(x)=$\sqrt{1-x^2}$,则函数H(x)=|xex|-f(x)在区间[-5,1]上的零点个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.由曲线y=$\sqrt{x}$,x轴及直线y=x-2所围成的图形的面积为(  )
A.$\frac{10}{3}$B.4C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=xlnx.
(Ⅰ) 求f(x)的极值;
(Ⅱ)设g(x)=f(x+1),若对任意的x≥0,都有g(x)≥mx成立,求实数m的取值范围;
(Ⅲ)若0<a<b,证明:0<f(a)+f(b)-2f($\frac{a+b}{2}$)<(b-a)ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin2(x+$\frac{π}{4}$).
(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)求f($\frac{π}{3}$-x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.球O与一圆柱的侧面和上下底面都相切,则球O的表面积与该圆柱的表面积的比值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}前n项和为Sn,且满足a1=r,Sn=an+1-$\frac{1}{32}(n∈{N^*})$.
(Ⅰ)试确定r的值,使{an}为等比数列,并求数列{an}的通项公式;
(Ⅱ)在(Ⅰ)的条件下,设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,“sinA=$\frac{1}{2}$”是“A=$\frac{π}{6}$”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.
(Ⅰ)求二面角A-PC-B的余弦值;
(Ⅱ)证明:在线段PC上存在点D,使得BD⊥AC,并求$\frac{PD}{PC}$的值.

查看答案和解析>>

同步练习册答案