精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x,x≥0
-x
,x<0
,则“f(a)=4”是“a=2”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:当a≥0时,由2a=4,解得a=2.当a<0时,由
-a
=4,解得a=-16.即可判断出.
解答: 解:当a≥0时,f(a)=2a=4,解得a=2.
当a<0时,f(a)=
-a
=4,解得a=-16.
因此“f(a)=4”是“a=2”的必要不充分条件.
故选:B.
点评:本题考查了分段函数的性质、充分必要条件的判定方法,考查了分类讨论的思想方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列1+
1
2
,2+
1
4
,3+
1
8
,…,n+
1
2n
,…的前n项和是(  )
A、sn=
n(n-1)
2
-
1
2n
B、sn=
n(n-1)
2
+1-
1
2n
C、sn=
n(n+1)
2
+1-
1
2n
D、sn=
n(n-1)
2
+
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
log2x                 x≥1
-x2+4ax-2a    x<1
,则“a=
1
2
”是“函数f(x)在R上递增”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
lnx
x
的单调递减区间是(  )
A、[e,+∞)
B、[1,+∞)
C、(0,e]
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这50个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和处理框中的②处填上合适的语句,使之能完成该题算法功能(  )
A、i≤50;p=p+i
B、i<50;p=p+i
C、i≤50;p=p+1
D、i<50;p=p+1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx是(  )
A、最小正周期为2π的偶函数
B、最小正周期为π的偶函数
C、最小正周期为2π的奇函数
D、最小正周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x,g(x)=1+
1
2
sin2x.
(1)若点A(α,y)(α∈[0,
π
4
])为函数f(x)与g(x)的图象的公共点,试求实数α的值;
(2)求函数h(x)=f(x)+g(x),x∈[0,
π
4
]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象是由y=sinx图象经过如下三个步骤变化得到的:
①将y=sinx的图象的纵坐标不变,横坐标缩短为原来的
1
2

②将①中图象整体向左平移
π
6
个单位;
③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(I)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,若f(A)=
3
,a=
2
,b+c=
6
,求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x+cos2x+1
2cosx

(Ⅰ)求f(x)的定义域和值域;
(Ⅱ)若曲线f(x)在点P(x0,f(x0))(-
π
2
<x0
π
2
)处的切线平行直线y=
3
x,求在点P处的切线方程.

查看答案和解析>>

同步练习册答案