精英家教网 > 高中数学 > 题目详情
12.把下面在平面内成立的结论类比地推广到空间,并判断类比的结论是否成立:
(1)如果一条直线和两条平行线中的一条相交,则必和另一条相交;
(2)如果两条直线同时垂直于第三条直线,则这两条直线互相平行.

分析 先将平面内成立的结论类比地推广到空间,再进行判断即可.

解答 解:在平面内成立的结论类比地推广到空间
(1)如果一条平面与两条平行平面中的一个相交,与另一平面一定相交,正确.
(2)如果两条平面同时垂直于第三平面,则这两平面互相平行,不正确.比如墙角上的三平面.

点评 本题考查了线面的平行和垂直定理,借助于具体的事物有助于理解,还能培养立体感.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知抛物线y=ax2(a>0)上两个动点A、B(不在原点),满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,若存在定点M,使得$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1,则M坐标为 (  )
A.({0,-a})B.({0,a})C.($\frac{1}{a}$,0})D.(0,$\frac{1}{a}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线y2=2px(p>0)的焦点为F,A、B为抛物线上的两个动点,且满足∠AFB=60°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则$\frac{|MN|}{|AB|}$的最大值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等差数列{an}的首项a1=1,公差d=-$\frac{1}{2}$,若直线x+y-3an=0和直线2x-y+2an-1=0的交点M在第四象限,则an=$-\frac{1}{2}n+\frac{3}{2}(n=3,4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,A=$\frac{π}{3}$,BC=3,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,有一块形状为等腰直角三角形的薄板,腰AC的长为a米(a为常数),现在斜边AB选一点D,将△ACD沿CD折起.翻扣在地面上,做成一个遮阳棚,如图(2),设△BCD的面积为S,点A到直线CD的距离为d,实践证明,遮阳效果y与S,d的乘积Sd成正比,比例系数为k,(k为常数,且k>0)
(1)设∠ACD=θ,试将S表示为θ的函数
(2)当点D在何处时,遮阳效果最佳(即y取得最大值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.2013可以用一种方式表示成如下形式:2013=a3×103+a2×102+a1×101+a0,其中ai∈Z,且0≤ai≤99,i=0,1,2,3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2,g(x)=-x2+bx-10(b>0),且直线y=4x-4是曲线y=g(x)的一条切线.
(1)求b的值;
(2)求与曲线y=f(x)和y=g(x)都相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,某渔船在航行中不幸遇险,发出呼救信号,我海军舰在A处获悉后,测出该渔船在方位角为30°、距离为10海里的C处,并测得该渔船正沿方位角为90°的方向,以30海里/时的速度向小岛P靠拢,我海军舰立即以30$\sqrt{3}$海里/时的速度前去营救,求舰艇的航向和靠近渔船所需的时间(注:方位角是从指北方向顺时针转到目标方向线的角).

查看答案和解析>>

同步练习册答案